跳转到内容

橋接模式

维基百科,自由的百科全书
桥接模式的UML类图

橋接模式(英語:bridge pattern),是一種軟件設計模式, 它将针对事物的抽象与其实现进行解耦,使它们可以各自独立的变化。桥接使用了封装聚集英语Object composition#Aggregation继承来将诸多责任分离进入不同的之中。

結構

[编辑]
桥接模式的样例UML类图和序列图[1]

在上面的UML类图中,抽象类(Abstraction)不实现为平常的单一继承层级。这里转而有个层级用于抽象类(Abstraction),另一个独立的层级用于它的实现者(Implementor),这使得二者相互独立。Abstraction接口(operation())的实现依据了(委托于)Implementor接口(imp.operationImp())。

UML序列图展示了运行时交互:Abstraction1对象委托实现于Implementor1对象(通过调用operationImp()Implementor1之上),它进行运算并返回到Abstraction1

参与者

[编辑]
  • Abstraction:定義抽象的介面。該介面包含實現具體行爲、具體特徵的Implementor介面。
  • Refined Abstraction:抽象介面Abstraction的子類,依舊是一個抽象的事物名。
  • Implementor:定義具體行爲、具體特徵的應用介面。
  • ConcreteImplementor:實現Implementor介面。

示例

[编辑]

橋接模式将事物對象的抽象概念與其具體行爲和特徵分離開來,如“圓形”、“三角形”歸于抽象的“形狀”之下,而“畫圓”、“畫三角”歸于實現行爲的“畫圖”類之下,然後将事物對象的抽象概念与其行爲橋接起来,即由“形狀”調用“畫圖”,例如:“圓形”调用“畫圓”,而“三角形”調用“畫三角”。下列各語言的代碼都用於寫出兩個不同的圓的坐標和半徑。

C++

[编辑]

下面是C++的例子:

import std;

using std::string;
using std::vector;

class DrawingAPI {
public:
    virtual ~DrawingAPI() = default;
    virtual string drawCircle(float x, float y, float radius) const = 0;
};

class DrawingAPI01: public DrawingAPI {
public:
    [[nodiscard]]
    string drawCircle(float x, float y, float radius) const override {
        return std::format("API01.circle at {}:{} - radius: {}", x, y, radius); 
    }
};

class DrawingAPI02: public DrawingAPI {
public:
    [[nodiscard]]
    string drawCircle(float x, float y, float radius) const override {
        return std::format("API02.circle at {}:{} - radius: {}", x, y, radius);
    }
};

class Shape {
protected:
    const DrawingAPI& drawingApi;
public:
    Shape(const DrawingAPI& api):
        drawingApi{api} {}

    virtual ~Shape() = default;

    virtual string draw() const = 0;
    virtual float resizeByPercentage(const float percent) noexcept = 0;
};

class CircleShape: public Shape {
private:
    float x;
    float y;
    float radius;
public:    
    CircleShape(const DrawingAPI& api, float x, float y, float radius): 
        Shape(api), x{x}, y{y}, radius{radius} {}

    [[nodiscard]]
    string draw() const override {
        return api.drawCircle(x, y, radius);
    }

    [[nodiscard]]
    float resizeByPercentage(float percent) noexcept override {
        return radius *= (1.0f + percent / 100.0f);
    }
};

int main(int argc, char* argv[]) {
    const DrawingAPI01 api1;
    const DrawingAPI02 api2;
    vector<CircleShape> shapes { 
        CircleShape{1.0f, 2.0f, 3.0f, api1}, 
        CircleShape{5.0f, 7.0f, 11.0f, api2} 
    }; 

    for (CircleShape& shape: shapes) {
        shape.resizeByPercentage(2.5);
        std::println("{}", shape.draw());
    }

    return 0;
}

输出为:

API01.circle at 1.000000:2.000000 - radius: 3.075000
API02.circle at 5.000000:7.000000 - radius: 11.275000

Java

[编辑]

下面是Java的例子:

/** "Implementor" */
interface DrawingAPI {
     public void drawCircle(double x, double y, double radius);
}

/** "ConcreteImplementor" 1/2 */
class DrawingAPI1 implements DrawingAPI {
     public void drawCircle(double x, double y, double radius) {
         System.out.printf("API1.circle at %f:%f radius %f\n", x, y, radius);
    }
}

/** "ConcreteImplementor" 2/2 */
class DrawingAPI2 implements DrawingAPI {
    public void drawCircle(double x, double y, double radius) { 
        System.out.printf("API2.circle at %f:%f radius %f\n", x, y, radius);
    }
}

/** "Abstraction" */
interface Shape {
    public void draw();                             // low-level
    public void resizeByPercentage(double pct);     // high-level
}

/** "Refined Abstraction" */
class CircleShape implements Shape {
    private double x, y, radius;
    private DrawingAPI drawingAPI;
    public CircleShape(double x, double y, double radius, DrawingAPI drawingAPI) {
        this.x = x;  this.y = y;  this.radius = radius; 
        this.drawingAPI = drawingAPI;
    }

    // low-level i.e. Implementation specific
    public void draw() {
        drawingAPI.drawCircle(x, y, radius);
    }   
    // high-level i.e. Abstraction specific
    public void resizeByPercentage(double pct) {
        radius *= pct;
    }
}

/** "Client" */
class BridgePattern {
    public static void main(String[] args) {
        Shape[] shapes = new Shape[2];
        shapes[0] = new CircleShape(1, 2, 3, new DrawingAPI1());
        shapes[1] = new CircleShape(5, 7, 11, new DrawingAPI2());

        for (Shape shape : shapes) {
            shape.resizeByPercentage(2.5);
            shape.draw();
        }
    }
}

C#

[编辑]

在下面的C#例子中,泛型形式的CircleShape<T>,通过T来接受接口IDrawingAPIstruct形式的继承者。

using System;
 
/** "Implementor" */
interface IDrawingAPI {
    void DrawCircle(double x, double y, double radius);
}
 
/** "ConcreteImplementor" 1/2 */
struct DrawingAPI1 : IDrawingAPI {
    public void DrawCircle(double x, double y, double radius) {
        System.Console.WriteLine("API1.circle at {0}:{1} radius {2}", x, y, radius); 
    }
}
 
/** "ConcreteImplementor" 2/2 */
struct DrawingAPI2 : IDrawingAPI {
    public void DrawCircle(double x, double y, double radius) { 
        System.Console.WriteLine("API2.circle at {0}:{1} radius {2}", x, y, radius); 
    }
}
 
 /** "Abstraction" */
interface IShape {
    void Draw();                             // low-level (i.e. Implementation-specific)
    void ResizeByPercentage(double pct);     // high-level (i.e. Abstraction-specific)
}
 
/** "Refined Abstraction" */
class CircleShape<T> : IShape
    where T : struct, IDrawingAPI {
    private double x, y, radius;
    private static IDrawingAPI drawingAPI = new T();
    public CircleShape(double x, double y, double radius) {
        this.x = x;  this.y = y;  this.radius = radius;
    }
    // low-level (i.e. Implementation-specific)
    public void Draw() { drawingAPI.DrawCircle(x, y, radius); }
    // high-level (i.e. Abstraction-specific)
    public void ResizeByPercentage(double pct) { radius *= pct; }
}
 
/** "Client" */
class BridgePattern {
    public static void Main(string[] args) {
        IShape[] shapes = new IShape[2];
        shapes[0] = new CircleShape<DrawingAPI1>(1, 2, 3);
        shapes[1] = new CircleShape<DrawingAPI2>(5, 7, 11);
 
        foreach (IShape shape in shapes) {
            shape.ResizeByPercentage(2.5);
            shape.Draw();
        }
    }
}

Python

[编辑]

在《设计模式》书中所举的示例是设计部件工具箱,就像GTKGDK英语GDK之间的关系那样,关于部件的抽象Abstraction及其具体化,与关于图形库的实现者接口Implementor及其跨越既有第三方平台(比如X11WaylandQuartzGDI)的不同具体实现,二者中实现者接口Implementor先决条件,根据它才能制定抽象Abstraction的特性和方法,并编写不同的具体实现来适配不同的平台。

下面是Python的具有绘制为主要功能的图形类层级英语Class hierarchy例子,这里的抽象Abstraction所具有的特性和方法是先决条件,接着根据它来制定其绘图功能的实现者接口Implementor,并编写不同的具体实现者比如栅格图绘制和矢量图绘制,通过传递显式的self英语this (computer programming)参数,在运行时由具体图形对象选择其绘图功能的具体实现者:

from abc import ABCMeta, abstractmethod

class Shape(metaclass=ABCMeta):
    def __init__(self, implement):
        self.draw_impl = implement.draw
    def draw(self, *args, **kwargs):
        self.draw_impl(self, *args, **kwargs)
    @abstractmethod
    def resize_by_percentage(self): pass

class Circle(Shape):
    def __call__(self, x, y, radius):
        self.x = x
        self.y = y
        self.radius = radius
        return self
    def resize_by_percentage(self, percent):
        self.radius *= 1 + percent/100

class Drawing(metaclass=ABCMeta):
    @abstractmethod
    def draw(self): pass

class DrawingCircle1(Drawing):
    def draw(self):
        print("Implementor1: drawing circle at "
            + f"({self.x},{self.y}) and radius={self.radius}")

class DrawingCircle2(Drawing):
    def draw(self):
        print("Implementor2: drawing circle at "
            + f"({self.x},{self.y}) and radius={self.radius}")

def test():
    shape_list = [
        Circle(DrawingCircle1)(1.0, 2.0, 3.0),
        Circle(DrawingCircle2)(5.0, 7.0, 11.0)]
    for shape in shape_list:
        shape.resize_by_percentage(25)
        shape.draw()

其执行:

>>> test()
Implementor1: drawing circle at (1.0,2.0) and radius=3.75
Implementor2: drawing circle at (5.0,7.0) and radius=13.75

引用

[编辑]