環狀RNA

環狀RNA(Circular RNA,簡稱circRNA)為生物細胞中的一類RNA,由線狀RNA5'端與3'端經共價結合(反向剪接)而形成[1]。有些環狀RNA可編碼蛋白質[2][3],有些則為非編碼RNA,大多數環狀RNA的功能均仍未知,過去認為環狀RNA僅是RNA剪接過程中產生的副產物,在細胞中數量不多且序列保守性低,應不具重要功能[4],但近年許多研究已漸推翻此觀點[1][5][6]。環狀RNA因不具5'端或3'端,不會被外切酶切割,在細胞中應較多數的線狀RNA穩定[6]。
目前人類細胞中已有超過25,000種環狀RNA被發現[7],多位於細胞質中[6],也有些源於基因內含子的環狀RNA(環狀內含子RNA,簡稱ciRNA)會留在細胞核中調控自身基因的表現[8]。有些環狀RNA可能可作為「miRNA海綿」(miRNA sponge)與miRNA結合,使後者無法和目標mRNA結合而阻斷RNA干擾[9][10]。環狀RNA還可能與一些RNA結合蛋白結合[5]、由內部核糖體進入位點(IRES)啟動轉譯而編碼蛋白質[11]、在細胞中運輸與儲存miRNA等[12]。環狀RNA的調控異常可能與多種癌症和神經退化性疾病有關[13][14]。
重複的 Alu 元件 序列大約占據人類基因組的 10%。[15] Alu 元件存在於蛋白編碼基因的內含子區域,特別是在形成環狀 RNA 的第一個和最後一個外顯子附近的兩側內含子中,對 circRNA 的形成具有顯著影響。[16][17][18][19]值得注意的是,環狀 RNA 兩側內含子中的 Alu 元件必須具有互補序列,因為這種互補性能夠形成 RNA 配對結構,從而促進 circRNA 的合成。[20]
RNA 編輯是一種重要的RNA修飾,由ADAR1和ADAR2介導,主要發生在蛋白編碼基因的 Alu 元件中。[21]研究表明,ADAR1 和 ADAR2 能以雙向方式調控癌細胞中 circRNA 的發生:它們既可抑制某些 circRNA 的形成,也可促進另一類 circRNA 的生成,作用機制包括依賴 RNA 編輯和不依賴編輯的兩種方式。[22] 研究進一步指出,關鍵腺苷位點的 A-to-I 編輯可穩定或破壞反向互補序列(RCMs)之間的鹼基配對和 RNA 二級結構,從而分別促進或抑制 circRNA 的生成。[22] 此外,RNA 編輯還可影響剪接因子的結合,為 circRNA 的調控添加了額外層次。[22]另有研究發現,在 back-splice 位點(BSS)上游和下游內含子中的 Alu 元件中發生的 A-to-I RNA 編輯,會減少人類心臟中 circRNA 的生成。[21] 在心力衰竭患者中,A-to-I 編輯水平顯著下降,導致 circRNA 水平普遍升高,這可能是由於缺乏編輯的 Alu 元件之間具有更強的互補配對能力所致。[21]
除真核生物經反向剪接形成的環狀RNA外,生物還有數種其他生成環狀RNA的機制,例如第二型內含子剪接的產物、某些藻類與古菌生成tRNA過程的中間產物等[7],另外D型肝炎與類病毒的基因組也是環狀RNA[23]。
參考文獻
[編輯]- ^ 1.0 1.1 Salzman, J; Gawad, C.; Wang, P.L.; Lacayo, N; Brown, PO. Circular RNAs are the Predominant Transcript Isoform from Hundreds of Human Genes in Diverse Cell Types. PLOS ONE. 2012, 7 (2): e30733. Bibcode:2012PLoSO...730733S. PMC 3270023
. PMID 22319583. doi:10.1371/journal.pone.0030733.
- ^ New study shows circular RNA can encode for proteins. Science Daily. 2017 [3 May 2018]. (原始內容存檔於2018-06-27).
- ^ Pamudurti, Nagarjuna Reddy; Bartok, Osnat; Jens, Marvin; et al. Translation of CircRNAs. Molecular Cell. 2017, 66 (1): 9–21.e7. PMC 5387669
. PMID 28344080. doi:10.1016/j.molcel.2017.02.021.
- ^ Guo, J.U.; Agarwal, V; Guo, H; Bartel, DP. Expanded identification and characterization of mammalian circular RNAs. Genome Biology. 2014, 15 (7): 409. PMC 4165365
. PMID 25070500. doi:10.1186/s13059-014-0409-z.
- ^ 5.0 5.1 Wilusz, J.E.; Sharp, PA. A Circuitous Route to Noncoding RNA (PDF). Science. 2013, 340 (6131): 440–41. Bibcode:2013Sci...340..440W. PMC 4063205
. PMID 23620042. doi:10.1126/science.1238522.
- ^ 6.0 6.1 6.2 Jeck, WR; Sorrentino, JA; Wang, K; et al. Circular RNAs are abundant, conserved, and associated with ALU repeats.. RNA. 2013, 19 (2): 141–57. PMC 3543092
. PMID 23249747. doi:10.1261/rna.035667.112.
- ^ 7.0 7.1 Nisar, Sabah; Bhat, Ajaz A.; Singh, Mayank; Karedath, Thasni; Rizwan, Arshi; Hashem, Sheema; Bagga, Puneet; Reddy, Ravinder; Jamal, Farrukh; Uddin, Shahab; Chand, Gyan. Insights Into the Role of CircRNAs: Biogenesis, Characterization, Functional, and Clinical Impact in Human Malignancies. Frontiers in Cell and Developmental Biology. 2021-02-05, 9 [2021-05-13]. ISSN 2296-634X. PMC 7894079
. PMID 33614648. doi:10.3389/fcell.2021.617281. (原始內容存檔於2024-06-12).
- ^ Zhang, Y; Zhang, XO; Chen, T; Xiang, JF; Yin, QF; Xing, YH; Zhu, S; Yang, L; Chen, LL. Circular Intronic Long Non-coding RNAs. Molecular Cell. 2013, 51 (6): 1–15. PMID 24035497. doi:10.1016/j.molcel.2013.08.017.
- ^ Ebert, MS; Sharp, PA. MicroRNA sponges: progress and possibilities. RNA. 2010, 16 (11): 2043–50. PMC 2957044
. PMID 20855538. doi:10.1261/rna.2414110.
- ^ Hansen, T.B.; Jensen, TI; Clausen, BH; Bramsen, JB; Finsen, B; Damgaard, CK; Kjems, J. Natural RNA circles function as efficient microRNA sponges. Nature. 2013, 495 (7441): 384–88. Bibcode:2013Natur.495..384H. PMID 23446346. doi:10.1038/nature11993.
- ^ Chen, CY; Sarnow, P. Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science. 1995, 268 (5209): 415–17. PMID 7536344. doi:10.1126/science.7536344.
- ^ Hentze, MW; Preiss, T. Circular RNAs: splicing's enigma variations. The EMBO Journal. 2013, 32 (7): 923–25. PMC 3616293
. PMID 23463100. doi:10.1038/emboj.2013.53.
- ^ Burd, CE; Jeck, WR; Liu, Y; Sanoff, HK; Wang, Z; Sharpless, NE. Expression of Linear and Novel Circular Forms of an INK4/ARF-Associated Non-coding RNA Correlates with Atherosclerosis Risk. PLOS Genetics. 2010, 6 (12): e1001223. PMC 2996334
. PMID 21151960. doi:10.1371/journal.pgen.1001233.
- ^ Dube, U; Del-Aguila, JL; Li, Z; Budde, JP; Jiang, S; Hsu, S; Ibanez, L; Fernandez, MV; et al. An atlas of cortical circular RNA expression in Alzheimer disease brains demonstrates clinical and pathological associations.. Nature Neuroscience. 2019, 22 (11): 1903–1912. PMC 6858549
. PMID 31591557. doi:10.1038/s41593-019-0501-5.
- ^ Daniel C, Silberberg G, Behm M, Öhman M. Alu elements shape the primate transcriptome by cis-regulation of RNA editing. Genome Biology. February 2014, 15 (2): R28. PMC 4053975
. PMID 24485196. doi:10.1186/gb-2014-15-2-r28
.
- ^ Ivanov A, Memczak S, Wyler E, Torti F, Porath HT, Orejuela MR, et al. Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Reports. January 2015, 10 (2): 170–177. PMID 25558066. doi:10.1016/j.celrep.2014.12.019
.
- ^ Wilusz JE. Repetitive elements regulate circular RNA biogenesis. Mobile Genetic Elements. 2015-05-04, 5 (3): 39–45. PMC 4588227
. PMID 26442181. doi:10.1080/2159256X.2015.1045682.
- ^ 引用錯誤:沒有為名為
wrj的參考文獻提供內容 - ^ Liang D, Wilusz JE. Short intronic repeat sequences facilitate circular RNA production. Genes & Development. October 2014, 28 (20): 2233–2247. PMC 4201285
. PMID 25281217. doi:10.1101/gad.251926.114.
- ^ Zhang XO, Wang HB, Zhang Y, Lu X, Chen LL, Yang L. Complementary sequence-mediated exon circularization. Cell. September 2014, 159 (1): 134–147. PMID 25242744. S2CID 18390400. doi:10.1016/j.cell.2014.09.001
.
- ^ 21.0 21.1 21.2 Kokot KE, Kneuer JM, John D, Rebs S, Möbius-Winkler MN, Erbe S, et al. Reduction of A-to-I RNA editing in the failing human heart regulates formation of circular RNAs. Basic Research in Cardiology. June 2022, 117 (1): 32. PMC 9226085
. PMID 35737129. doi:10.1007/s00395-022-00940-9.
- ^ 22.0 22.1 22.2 Shen H, An O, Ren X, Song Y, Tang SJ, Ke XY, et al. ADARs act as potent regulators of circular transcriptome in cancer. Nature Communications. March 2022, 13: 1508. PMC 8938519
. PMID 35314703. doi:10.1038/s41467-022-29138-2.
- ^ Harichandran K, Shen Y, Stephenson Tsoris S, Lee SC, Casey JL. Hepatitis Delta Antigen Regulates mRNA and Antigenome RNA Levels during Hepatitis Delta Virus Replication.. J Virol. 2019, 93 (8). PMC 6450126
. PMID 30728256. doi:10.1128/JVI.01989-18.