跳转到内容

表皮碳氢化合物

维基百科,自由的百科全书

表皮碳氢化合物(英語:Cuticular hydrocarbon,缩写CHC)是昆虫表皮蜡质的主要组成成分之一,对昆虫适应陆地生活具有关键作用,能够防止水分流失、提供物理屏障以及介导化学通讯[1]。昆虫表皮蜡质主要由游离脂肪酸脂肪醇碳氢化合物等组成,其中以CHC占比最高。[2]

结构与理化性质

[编辑]

CHC通常为饱和、不饱和直链及支链烃的混合物,由昆虫体内特化的绛色细胞合成,随后经运输系统转移至上表皮发挥功能[1]。大多数昆虫的CHC以碳链长度超过20个碳原子的正链烷烃、甲基烷烃及不饱和烯烃二烯烃为主[3],部分种类则含有罕见的三烯、四烯或甲基烯烃[4]。不同昆虫间CHC的碳链长度、甲基双键的数量与位置、甲基的手性异构及双键的立体异构等差异显著[5][2]

在自然条件下,昆虫CHC呈固-液混合状态,能牢固附着于体表,以实现防护与通讯功能[6]

碳链超过20个碳原子的正链烷烃稳定性高、挥发性低,且范德华力强,具有优异的防水性能[7][8]

手性甲基烷烃及立体异构烯烃的出现增加了CHC结构的复杂性,使其在化学通讯中能携带更多信息[1]。在室温下,碳链长度超过20个碳原子的CHC为低挥发性液体或固体,其蒸汽压特征及扩散速率因体表结构差异而异,从而形成身体部位特异的化学信号[6][9]

功能

[编辑]

昆虫CHC主要具有三大功能:防止水分流失、提供物理屏障以及介导化学通讯。

防水作用

[编辑]

CHC的防水功能最早由James O. Ramsay在1935年提出[10]。尽管CHC总质量通常不足昆虫体重的0.1%,却能使其表皮透水性降低约1300%,这源于CHC结构的强疏水性[11]。环境温湿度变化可显著影响CHC的组成及昆虫体壁的透水性[3][12][13]。例如,在高温条件下,小红蚁Myrmica rubra)与皱结红蚁M. ruginodis)体表直链烷烃比例上升,而甲基化及不饱和化合物比例降低,以维持体内水分平衡[14]

物理屏障

[编辑]

作为覆盖昆虫表面的固液混合层,CHC能有效抵御农药及病原生物等外来威胁[15][16]

化学通讯

[编辑]

CHC在昆虫的行为调控中发挥重要作用,包括配偶与亲缘识别、巢穴标记、社会分工、觅食及免疫等[3][17]。在社会性昆虫中,CHC所传递的信息对于群体结构与行为分化尤为关键[1]

组成比例与功能关系

[编辑]

不同CHC化合物间的比例也会影响其功能。例如欧洲狼蜂Philanthus triangulum)触角腺分泌物中烯烃与正链烷烃的比例约为3:1,该混合物能形成疏水层以保护巢室中共生放线菌免受一氧化氮毒害[18]

参考文献

[编辑]
  1. ^ 1.0 1.1 1.2 1.3 Zhixiang, Liu; Hua, Xie; Hui, Zhang; Xiaolei, Huang. Functional diversity and regulation of cuticular hydrocarbons in social insects. Biodiversity Science. 2025, 33 (2): 24302. doi:10.17520/biods.2024302. 
  2. ^ 2.0 2.1 Insect Hydrocarbons: Biology, Biochemistry, and Chemical Ecology. Cambridge University Press. 2010 [2025-10-21]. ISBN 978-0-521-89814-0. 
  3. ^ 3.0 3.1 3.2 Blomquist, GJ; Ginzel, MD. Chemical Ecology, Biochemistry, and Molecular Biology of Insect Hydrocarbons.. Annual review of entomology. 2021-01-07, 66: 45–60. PMID 33417824. doi:10.1146/annurev-ento-031620-071754. 
  4. ^ Kather, R; Martin, SJ. Evolution of Cuticular Hydrocarbons in the Hymenoptera: a Meta-Analysis.. Journal of chemical ecology. 2015-10, 41 (10): 871–83. PMID 26410609. doi:10.1007/s10886-015-0631-5. 
  5. ^ Martin, S; Drijfhout, F. A review of ant cuticular hydrocarbons.. Journal of chemical ecology. 2009-10, 35 (10): 1151–61. PMID 19866237. doi:10.1007/s10886-009-9695-4. 
  6. ^ 6.0 6.1 Menzel, Florian; Morsbach, Svenja; Martens, Jiska H.; Räder, Petra; Hadjaje, Simon; Poizat, Marine; Abou, Bérengère. Communication vs. waterproofing: the physics of insect cuticular hydrocarbons. Journal of Experimental Biology. 2019-01-01. doi:10.1242/jeb.210807. 
  7. ^ Chung, H; Carroll, SB. Wax, sex and the origin of species: Dual roles of insect cuticular hydrocarbons in adaptation and mating.. BioEssays : news and reviews in molecular, cellular and developmental biology. 2015-07, 37 (7): 822–30. PMID 25988392. doi:10.1002/bies.201500014. 
  8. ^ Gibbs, Allen G. Water-Proofing Properties of Cuticular Lipids. American Zoologist. 1998-06, 38 (3): 471–482. doi:10.1093/icb/38.3.471. 
  9. ^ Sprenger, PP; Gerbes, LJ; Sahm, J; Menzel, F. Cuticular hydrocarbon profiles differ between ant body parts: implications for communication and our understanding of CHC diffusion.. Current zoology. 2021-10, 67 (5): 531–540. PMID 34616951. doi:10.1093/cz/zoab012. 
  10. ^ Ramsay, J. A. The Evaporation of Water from the Cockroach. Journal of Experimental Biology. 1935-10-01, 12 (4): 373–383. doi:10.1242/jeb.12.4.373. 
  11. ^ Gibbs, AG; Chippindale, AK; Rose, MR. Physiological mechanisms of evolved desiccation resistance in Drosophila melanogaster.. The Journal of experimental biology. 1997-06, 200 (Pt 12): 1821–32. PMID 9225453. doi:10.1242/jeb.200.12.1821. 
  12. ^ Wang, Z; Receveur, JP; Pu, J; Cong, H; Richards, C; Liang, M; Chung, H. Desiccation resistance differences in Drosophila species can be largely explained by variations in cuticular hydrocarbons.. eLife. 2022-12-06, 11. PMID 36473178. doi:10.7554/eLife.80859. 
  13. ^ Yang, Yujing; Li, Xiaosai; Liu, Deguang; Pei, Xiaojin; Khoso, Abdul Ghaffar. Rapid Changes in Composition and Contents of Cuticular Hydrocarbons in Sitobion avenae (Hemiptera: Aphididae) Clones Adapting to Desiccation Stress. Journal of Economic Entomology. 2022-04-13, 115 (2): 508–518. doi:10.1093/jee/toab240. 
  14. ^ Sprenger, Philipp P.; Burkert, Lars H.; Abou, Bérengère; Federle, Walter; Menzel, Florian. Coping with the climate: Cuticular hydrocarbon acclimation of ants under constant and fluctuating conditions. Journal of Experimental Biology. 2018-01-01. doi:10.1242/jeb.171488. 
  15. ^ Balabanidou, V; Grigoraki, L; Vontas, J. Insect cuticle: a critical determinant of insecticide resistance.. Current opinion in insect science. 2018-06, 27: 68–74. PMID 30025637. doi:10.1016/j.cois.2018.03.001. 
  16. ^ Wrońska, AK; Kaczmarek, A; Boguś, MI; Kuna, A. Lipids as a key element of insect defense systems.. Frontiers in genetics. 2023, 14: 1183659. PMID 37359377. doi:10.3389/fgene.2023.1183659. 
  17. ^ Saleh, NW; Hodgson, K; Pokorny, T; Mullins, A; Chouvenc, T; Eltz, T; Ramírez, SR. Social Behavior, Ovary Size, and Population of Origin Influence Cuticular Hydrocarbons in the Orchid Bee Euglossa dilemma.. The American naturalist. 2021-11, 198 (5): E136–E151. PMID 34648396. doi:10.1086/716511. 
  18. ^ Ingham, CS; Engl, T; Matarrita-Carranza, B; Vogler, P; Huettel, B; Wielsch, N; Svatoš, A; Kaltenpoth, M. Host hydrocarbons protect symbiont transmission from a radical host defense.. Proceedings of the National Academy of Sciences of the United States of America. 2023-08, 120 (31): e2302721120. PMID 37487102. doi:10.1073/pnas.2302721120.