表皮碳氫化合物
表皮碳氫化合物(英語:Cuticular hydrocarbon,縮寫CHC)是昆蟲表皮蠟質的主要組成成分之一,對昆蟲適應陸地生活具有關鍵作用,能夠防止水分流失、提供物理屏障以及介導化學通訊[1]。昆蟲表皮蠟質主要由游離脂肪酸、脂肪醇、醛、酯、酮及碳氫化合物等組成,其中以CHC占比最高。[2]
結構與理化性質
[編輯]CHC通常為飽和、不飽和直鏈烴及支鏈烴的混合物,由昆蟲體內特化的絳色細胞合成,隨後經運輸系統轉移至上表皮發揮功能[1]。大多數昆蟲的CHC以碳鏈長度超過20個碳原子的正鏈烷烴、甲基烷烴及不飽和烯烴或二烯烴為主[3],部分種類則含有罕見的三烯、四烯或甲基烯烴[4]。不同昆蟲間CHC的碳鏈長度、甲基及雙鍵的數量與位置、甲基的手性異構及雙鍵的立體異構等差異顯著[5][2]。
在自然條件下,昆蟲CHC呈固-液混合狀態,能牢固附著於體表,以實現防護與通訊功能[6]。
碳鏈超過20個碳原子的正鏈烷烴穩定性高、揮發性低,且范德華力強,具有優異的防水性能[7][8]。
手性甲基烷烴及立體異構烯烴的出現增加了CHC結構的複雜性,使其在化學通訊中能攜帶更多信息[1]。在室溫下,碳鏈長度超過20個碳原子的CHC為低揮發性液體或固體,其蒸汽壓特徵及擴散速率因體表結構差異而異,從而形成身體部位特異的化學信號[6][9]。
功能
[編輯]昆蟲CHC主要具有三大功能:防止水分流失、提供物理屏障以及介導化學通訊。
防水作用
[編輯]CHC的防水功能最早由James O. Ramsay在1935年提出[10]。儘管CHC總質量通常不足昆蟲體重的0.1%,卻能使其表皮透水性降低約1300%,這源於CHC結構的強疏水性[11]。環境溫濕度變化可顯著影響CHC的組成及昆蟲體壁的透水性[3][12][13]。例如,在高溫條件下,小紅蟻(Myrmica rubra)與皺結紅蟻(M. ruginodis)體表直鏈烷烴比例上升,而甲基化及不飽和化合物比例降低,以維持體內水分平衡[14]。
物理屏障
[編輯]作為覆蓋昆蟲表面的固液混合層,CHC能有效抵禦農藥及病原生物等外來威脅[15][16]。
化學通訊
[編輯]CHC在昆蟲的行為調控中發揮重要作用,包括配偶與親緣識別、巢穴標記、社會分工、覓食及免疫等[3][17]。在社會性昆蟲中,CHC所傳遞的信息對於群體結構與行為分化尤為關鍵[1]。
組成比例與功能關係
[編輯]不同CHC化合物間的比例也會影響其功能。例如歐洲狼蜂(Philanthus triangulum)觸角腺分泌物中烯烴與正鏈烷烴的比例約為3:1,該混合物能形成疏水層以保護巢室中共生放線菌免受一氧化氮毒害[18]。
參考文獻
[編輯]- ^ 1.0 1.1 1.2 1.3 Zhixiang, Liu; Hua, Xie; Hui, Zhang; Xiaolei, Huang. Functional diversity and regulation of cuticular hydrocarbons in social insects. Biodiversity Science. 2025, 33 (2): 24302. doi:10.17520/biods.2024302.
- ^ 2.0 2.1 Insect Hydrocarbons: Biology, Biochemistry, and Chemical Ecology. Cambridge University Press. 2010 [2025-10-21]. ISBN 978-0-521-89814-0.
- ^ 3.0 3.1 3.2 Blomquist, GJ; Ginzel, MD. Chemical Ecology, Biochemistry, and Molecular Biology of Insect Hydrocarbons.. Annual review of entomology. 2021-01-07, 66: 45–60. PMID 33417824. doi:10.1146/annurev-ento-031620-071754.
- ^ Kather, R; Martin, SJ. Evolution of Cuticular Hydrocarbons in the Hymenoptera: a Meta-Analysis.. Journal of chemical ecology. 2015-10, 41 (10): 871–83. PMID 26410609. doi:10.1007/s10886-015-0631-5.
- ^ Martin, S; Drijfhout, F. A review of ant cuticular hydrocarbons.. Journal of chemical ecology. 2009-10, 35 (10): 1151–61. PMID 19866237. doi:10.1007/s10886-009-9695-4.
- ^ 6.0 6.1 Menzel, Florian; Morsbach, Svenja; Martens, Jiska H.; Räder, Petra; Hadjaje, Simon; Poizat, Marine; Abou, Bérengère. Communication vs. waterproofing: the physics of insect cuticular hydrocarbons. Journal of Experimental Biology. 2019-01-01. doi:10.1242/jeb.210807.
- ^ Chung, H; Carroll, SB. Wax, sex and the origin of species: Dual roles of insect cuticular hydrocarbons in adaptation and mating.. BioEssays : news and reviews in molecular, cellular and developmental biology. 2015-07, 37 (7): 822–30. PMID 25988392. doi:10.1002/bies.201500014.
- ^ Gibbs, Allen G. Water-Proofing Properties of Cuticular Lipids. American Zoologist. 1998-06, 38 (3): 471–482. doi:10.1093/icb/38.3.471.
- ^ Sprenger, PP; Gerbes, LJ; Sahm, J; Menzel, F. Cuticular hydrocarbon profiles differ between ant body parts: implications for communication and our understanding of CHC diffusion.. Current zoology. 2021-10, 67 (5): 531–540. PMID 34616951. doi:10.1093/cz/zoab012.
- ^ Ramsay, J. A. The Evaporation of Water from the Cockroach. Journal of Experimental Biology. 1935-10-01, 12 (4): 373–383. doi:10.1242/jeb.12.4.373.
- ^ Gibbs, AG; Chippindale, AK; Rose, MR. Physiological mechanisms of evolved desiccation resistance in Drosophila melanogaster.. The Journal of experimental biology. 1997-06, 200 (Pt 12): 1821–32. PMID 9225453. doi:10.1242/jeb.200.12.1821.
- ^ Wang, Z; Receveur, JP; Pu, J; Cong, H; Richards, C; Liang, M; Chung, H. Desiccation resistance differences in Drosophila species can be largely explained by variations in cuticular hydrocarbons.. eLife. 2022-12-06, 11. PMID 36473178. doi:10.7554/eLife.80859.
- ^ Yang, Yujing; Li, Xiaosai; Liu, Deguang; Pei, Xiaojin; Khoso, Abdul Ghaffar. Rapid Changes in Composition and Contents of Cuticular Hydrocarbons in Sitobion avenae (Hemiptera: Aphididae) Clones Adapting to Desiccation Stress. Journal of Economic Entomology. 2022-04-13, 115 (2): 508–518. doi:10.1093/jee/toab240.
- ^ Sprenger, Philipp P.; Burkert, Lars H.; Abou, Bérengère; Federle, Walter; Menzel, Florian. Coping with the climate: Cuticular hydrocarbon acclimation of ants under constant and fluctuating conditions. Journal of Experimental Biology. 2018-01-01. doi:10.1242/jeb.171488.
- ^ Balabanidou, V; Grigoraki, L; Vontas, J. Insect cuticle: a critical determinant of insecticide resistance.. Current opinion in insect science. 2018-06, 27: 68–74. PMID 30025637. doi:10.1016/j.cois.2018.03.001.
- ^ Wrońska, AK; Kaczmarek, A; Boguś, MI; Kuna, A. Lipids as a key element of insect defense systems.. Frontiers in genetics. 2023, 14: 1183659. PMID 37359377. doi:10.3389/fgene.2023.1183659.
- ^ Saleh, NW; Hodgson, K; Pokorny, T; Mullins, A; Chouvenc, T; Eltz, T; Ramírez, SR. Social Behavior, Ovary Size, and Population of Origin Influence Cuticular Hydrocarbons in the Orchid Bee Euglossa dilemma.. The American naturalist. 2021-11, 198 (5): E136–E151. PMID 34648396. doi:10.1086/716511.
- ^ Ingham, CS; Engl, T; Matarrita-Carranza, B; Vogler, P; Huettel, B; Wielsch, N; Svatoš, A; Kaltenpoth, M. Host hydrocarbons protect symbiont transmission from a radical host defense.. Proceedings of the National Academy of Sciences of the United States of America. 2023-08, 120 (31): e2302721120. PMID 37487102. doi:10.1073/pnas.2302721120.