GCaMP
GCaMP是一种基因编码钙指示剂(GECI),最初由中井淳一于2001年开发。[1] 它由绿色荧光蛋白(GFP)、钙调蛋白(calmodulin,CaM)和源自肌球蛋白轻链激酶的肽序列M13通过人工融合构成。[2] 当与Ca2+结合时,GCaMP会发出绿色荧光,其激发峰波长峰值为480 nm,发射峰波长约为510 nm。[3] 在生物学研究中,GCaMP被广泛用于测量体外和体内细胞内Ca2+水平,通常通过病毒转染或在转基因细胞系与动物品系中表达。[2][4] GCaMP的编码基因序列可以置于只在特定细胞类型中活跃的启动子的控制下,从而实现GCaMP在特定细胞类型中的特异性表达。[5] 由于Ca2+是参与多种细胞机制和信号通路的第二信使,GCaMP能够使研究者定量分析基于Ca2+的各种活动,并研究Ca2+离子在相关生物学过程中所发挥的作用。

结构
[编辑]GCaMP由三个关键结构域组成:位于N端的M13结构域、位于C端的钙调蛋白(CaM)结构域,以及位于中间的GFP结构域。GFP结构域经过环形重排处理,即其天然的N端和C端通过一个由六个氨基酸构成的连接肽彼此连接,而GFP的氨基酸序列在中间被切开,形成新的N端和C端,再分别与M13结构域和CaM结构域连接。[6]
在缺乏Ca2+的情况下,GFP的发色团暴露于水环境中,并以质子化状态存在,此时荧光强度很低。当Ca2+结合时,CaM结构域发生构象改变,并紧密结合M13结构域的α螺旋,从而阻止水分子接近发色团,导致发色团迅速去质子化,转变为带负电荷的形式,发出类似于天然GFP的强荧光。[7]
历史与发展
[编辑]2001年,Nakai等人报道了GCaMP1的开发,将其描述为相较于此前荧光Ca2+探针具有更高信噪比的Ca2+探针。[1] 2004年,首个表达GCaMP1的转基因小鼠被报道。[5] 然而,在37℃(哺乳动物的生理温度)下,GCaMP1的折叠不够稳定,荧光也不够强,这限制了其作为体内钙指示剂的潜在应用。[1][8]
2006年,Tallini等人随后报道了由GCaMP1改良而来的GCaMP2。与GCaMP1相比,GCaMP2的荧光更亮,在哺乳动物体温下也表现出更好的稳定性。Tallini等人将GCaMP2表达于小鼠胚胎的心肌细胞中,实现了首例在哺乳动物体内利用GCaMP成像Ca2+的实验。[8]
此后,人们对GCaMP进行了进一步改造,包括GCaMP3、GCaMP5、GCaMP6和jGCaMP7等,这些变体在Ca2+检测的信号强度、灵敏度和动态范围等方面都不断得到改善,[2][9][10][11] 最近的一些版本在荧光亮度上已接近天然GFP。[11]
常用变体
[编辑]在生物学和神经科学研究中,广泛使用的既有慢型变体(如GCaMP6s、jGCaMP7s),也有快型变体(如GCaMP6f、jGCaMP7f)。慢型变体亮度更高,对小幅度的Ca2+水平变化(例如单次动作电位)更加敏感;相对地,快型变体的灵敏度较低,但响应速度更快,更适合追踪在精确时间尺度上发生的Ca2+变化。[12][13] GCaMP6还包括一种中等动力学的变体GCaMP6m,其动力学特征介于GCaMP6s和GCaMP6f之间。[12] jGCaMP7也有多种常用的变体:例如jGCaMP7b具有较高的基础荧光强度,适合成像树突和轴突;而jGCaMP7c则在最大荧光与基础荧光之间具有更大的对比度,更适用于成像大规模的神经元群体。[12]
2018年,Yang等人报道了GCaMP-X的开发,该变体额外加入一个钙调蛋白结合基序。由于GCaMP中的钙调蛋白结构域在未结合状态下会干扰L型钙通道的门控,这一新增的钙调蛋白结合基序可以防止GCaMP-X干扰钙依赖的信号传导机制。[14]
2020年,Zhang等人报道了jGCaMP8的开发,其中包含高灵敏度型、中等型和快型等多个变体,这些变体在动力学和灵敏度上都优于相应的jGCaMP7变体。[15]
此外,人们还开发了红色荧光指示剂:例如jRCaMP1a和jRCaMP1b使用的是红色荧光蛋白mRuby的环形重排形式,而jRGECO1a则基于红色荧光蛋白mApple。[12][16] 由于用于激发GCaMP的蓝光在组织中散射严重,而其发出的绿色荧光易被血液吸收,红色荧光指示剂在体内成像时可以提供更好的组织穿透力和成像深度。使用红色指示剂还可以避免蓝光激发所带来的光损伤。[16] 此外,红色指示剂可以与光遗传学同时使用,而这对GCaMP来说较为困难,因为GCaMP的激发波长与通道视紫红质-2(channelrhodopsin-2,ChR2)的激发波长重叠。[16][17][18] 同时使用红色和绿色GECI还能实现对不同亚细胞区域或不同细胞群体的双色可视化。[16][17][19]
研究应用
[编辑]神经元活动
[编辑]在神经元中,动作电位通过打开电压门控Ca2+通道,引发轴突末梢的神经递质释放,并伴随Ca2+内流。因此,GCaMP常被用来测量神经元内Ca2+的升高,以此作为多种动物模型(包括秀丽隐杆线虫、斑马鱼、果蝇、大鼠和小鼠)神经元活动的指标。[20] 近年来,除了GECI之外,基因编码电压指示剂(GEVI)也被开发出来(geneticallyencodedvoltageindicator,GEVI),它们可以在细胞水平上更加直接地探测上述动物模型中的神经元活动。[21]
GCaMP在建立动物大规模神经记录方面发挥了至关重要的作用,帮助研究者探索神经网络活动模式如何影响行为。例如,Nguyen等人(2016)在自由活动的秀丽隐杆线虫全脑成像中使用GCaMP,识别出与特定运动行为相关的神经元及神经元群体。[22]
Muto等人(2003)在斑马鱼胚胎中表达GCaMP,以测量并绘制脊髓运动神经元在不同脑区的协同活动,这些活动对戊四氮(pentylenetetrazol)诱导的发作起始、传播和恢复过程十分关键。[23] 在斑马鱼脑内表达GCaMP也被用于研究认知过程中神经回路的激活,例如捕食、冲动控制和注意力。[24][25]
此外,研究人员还通过在小鼠中在Thy1启动子控制下表达GCaMP,观察神经元活动。Thy1启动子主要在兴奋性锥体神经元中表达。[26] 例如,有研究利用GCaMP观察Ca2+水平的同步波动模式,从而追踪神经元在运动学习过程中如何整合进功能回路。[27][28][29] GCaMP也被用于观察小鼠神经元亚细胞结构中的Ca2+动力学:Cichon和Gan(2015)利用GCaMP表明,小鼠运动皮层中的神经元小在各个树突棘中出现由NMDA受体驱动的Ca2+升高,而这些升高在不同树突棘之间相互独立,从而说明单个树突棘可独立调控突触可塑性。[30] 最后,GCaMP还被用于识别小鼠大脑特定区域的活动模式。例如,Jones等人(2018)在小鼠中使用GCaMP6测量视交叉上核(SCN,哺乳动物昼夜节律起搏器)中的神经元活动,结果表明产生血管活性肠肽(VIP)的SCN神经元在体内表现出与VIP释放相关的昼夜节律活动。[31]
GCaMP技术还可以与光纤光度法结合,用于在自由活动动物中测量特定神经元亚群内Ca2+水平的群体变化。[32] 例如,Clarkson等人(2017)利用该方法证明,下丘脑弓状核的神经元在促黄体生成素(LH)脉冲之前立即同步出现Ca2+升高。[33] 结合光纤光度法的GCaMP成像无法分辨单个神经元内部的Ca2+变化,但在观察大规模变化时可以提供更高的时间分辨率。[34]
心脏传导
[编辑]心肌细胞通过间隙连接传递Ca2+电流,从而介导心肌组织的同步收缩。因此,心肌细胞中表达GCaMP,无论是在体外还是体内,都可用于研究斑马鱼和小鼠中依赖Ca2+内流的兴奋与收缩过程。[35] 例如,Tallini等人(2006)在小鼠胚胎中表达GCaMP2,证明在胚胎发育第10.5天,心房和心室的电传导已经很快,而房室管的电传导仍较缓慢。[8] Chi等人(2008)利用一个心脏特异性表达GCaMP的转基因斑马鱼品系,对整个心动周期中的心肌细胞激活进行了成像;根据这些结果,他们表征了斑马鱼心脏传导系统的四个发育阶段,并鉴定了17个影响心脏传导的新突变。[36] 然而,如果不加控制地高水平表达GCaMP,会因为过度表达钙调蛋白基序而导致心肌肥大,并干扰细胞内钙信号通路。因此,在使用心脏组织进行实验时,需要谨慎控制GCaMP的表达水平。[8]
信号通路激活
[编辑]由于Ca2+是常见的第二信使,GCaMP被广泛用于监测信号通路的激活。例如,Bonder和McCarthy(2014)利用GCaMP证明,星形胶质细胞的G蛋白偶联受体(GPCR)信号及其导致的Ca2+释放,并不是由于神经血管耦联(即神经活动变化引起局部血流变化过程)。[37] 类似地,Greer和Bear等人(2016)利用GCaMP表征了颈状嗅觉神经元(necklaceolfactoryneuron)信号传导中Ca2+内流的动力学,这种信号通路依赖于MS4A这一跨膜蛋白家族作为化学感受器。[38]
参见
[编辑]参考文献
[编辑]- ^ 1.0 1.1 1.2 Nakai J, Ohkura M, Imoto K. A high signal-to-noise Ca(2+) probe composed of a single green fluorescent protein. Nature Biotechnology. February 2001, 19 (2): 137–41. PMID 11175727. S2CID 30254550. doi:10.1038/84397.
- ^ 2.0 2.1 2.2 Chen TW, Wardill TJ, Sun Y, Pulver SR, Renninger SL, Baohan A, et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature. July 2013, 499 (7458): 295–300. Bibcode:2013Natur.499..295C. PMC 3777791
. PMID 23868258. doi:10.1038/nature12354.
- ^ Barnett LM, Hughes TE, Drobizhev M. Deciphering the molecular mechanism responsible for GCaMP6m's Ca2+-dependent change in fluorescence. PLOS ONE. 2017-02-09, 12 (2). Bibcode:2017PLoSO..1270934B. PMC 5300113
. PMID 28182677. doi:10.1371/journal.pone.0170934
.
- ^ Whitaker M. Genetically encoded probes for measurement of intracellular calcium. Calcium in Living Cells. Methods in Cell Biology 99. 2010-01-01: 153–82. ISBN 978-0-12-374841-6. PMC 3292878
. PMID 21035686. doi:10.1016/B978-0-12-374841-6.00006-2.
- ^ 5.0 5.1 Ji G, Feldman ME, Deng KY, Greene KS, Wilson J, Lee JC, et al. Ca2+-sensing transgenic mice: postsynaptic signaling in smooth muscle. The Journal of Biological Chemistry. May 2004, 279 (20): 21461–8. PMID 14990564. S2CID 9532711. doi:10.1074/jbc.M401084200
(English).
- ^ Akerboom J, Rivera JD, Guilbe MM, Malavé EC, Hernandez HH, Tian L, et al. Crystal structures of the GCaMP calcium sensor reveal the mechanism of fluorescence signal change and aid rational design. The Journal of Biological Chemistry. March 2009, 284 (10): 6455–64. PMC 2649101
. PMID 19098007. doi:10.1074/jbc.M807657200
(English).
- ^ Wang Q, Shui B, Kotlikoff MI, Sondermann H. Structural basis for calcium sensing by GCaMP2. Structure. December 2008, 16 (12): 1817–27. PMC 2614139
. PMID 19081058. doi:10.1016/j.str.2008.10.008 (English).
- ^ 8.0 8.1 8.2 8.3 Tallini YN, Ohkura M, Choi BR, Ji G, Imoto K, Doran R, et al. Imaging cellular signals in the heart in vivo: Cardiac expression of the high-signal Ca2+ indicator GCaMP2. Proceedings of the National Academy of Sciences of the United States of America. March 2006, 103 (12): 4753–8. Bibcode:2006PNAS..103.4753T. PMC 1450242
. PMID 16537386. doi:10.1073/pnas.0509378103
.
- ^ Tian L, Hires SA, Mao T, Huber D, Chiappe ME, Chalasani SH, et al. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nature Methods. December 2009, 6 (12): 875–81. PMC 2858873
. PMID 19898485. doi:10.1038/nmeth.1398.
- ^ Akerboom J, Chen TW, Wardill TJ, Tian L, Marvin JS, Mutlu S, et al. Optimization of a GCaMP calcium indicator for neural activity imaging. The Journal of Neuroscience. October 2012, 32 (40): 13819–40. PMC 3482105
. PMID 23035093. doi:10.1523/JNEUROSCI.2601-12.2012.
- ^ 11.0 11.1 Inoue M. Genetically encoded calcium indicators to probe complex brain circuit dynamics in vivo. Neuroscience Research. June 2020, 169: 2–8. PMID 32531233. S2CID 219559849. doi:10.1016/j.neures.2020.05.013.
- ^ 12.0 12.1 12.2 12.3 Haery L. Switch to GECO? An Overview of AAV Encoded Calcium Sensors. blog.addgene.org. [2021-05-06] (美国英语).
- ^ Bassett JJ, Monteith GR. Genetically Encoded Calcium Indicators as Probes to Assess the Role of Calcium Channels in Disease and for High-Throughput Drug Discovery. Ion Channels Down Under (PDF). Advances in Pharmacology 79. 2017-01-01: 141–171. ISBN 978-0-12-810413-2. PMID 28528667. doi:10.1016/bs.apha.2017.01.001.
- ^ Yang Y, Liu N, He Y, Liu Y, Ge L, Zou L, et al. Improved calcium sensor GCaMP-X overcomes the calcium channel perturbations induced by the calmodulin in GCaMP. Nature Communications. April 2018, 9 (1). Bibcode:2018NatCo...9.1504Y. PMC 5904127
. PMID 29666364. doi:10.1038/s41467-018-03719-6.
- ^ Zhang Y, Rózsa M, Bushey D, Reep D, Broussard GY, Tsang A, et al. jGCaMP8 Fast Genetically Encoded Calcium Indicators: 361685 Bytes. 2020. doi:10.25378/janelia.13148243.v4.
- ^ 16.0 16.1 16.2 16.3 Dana H, Mohar B, Sun Y, Narayan S, Gordus A, Hasseman JP, et al. Sensitive red protein calcium indicators for imaging neural activity. eLife. March 2016, 5. PMC 4846379
. PMID 27011354. doi:10.7554/eLife.12727
.
- ^ 17.0 17.1 Akerboom J, Carreras Calderón N, Tian L, Wabnig S, Prigge M, Tolö J, et al. Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics. Frontiers in Molecular Neuroscience. 2013, 6: 2. PMC 3586699
. PMID 23459413. doi:10.3389/fnmol.2013.00002
.
- ^ Patriarchi, Tommaso; Mohebi, Ali; Sun, Junqing; Marley, Aaron; Liang, Ruqiang; Dong, Chunyang; Puhger, Kyle; Mizuno, Grace Or; Davis, Carolyn M.; Wiltgen, Brian; von Zastrow, Mark. An expanded palette of dopamine sensors for multiplex imaging in vivo. Nature Methods. 2020-09-07, 17 (11): 1147–1155. ISSN 1548-7105. PMC 8169200
. PMID 32895537. doi:10.1038/s41592-020-0936-3 (英语).
- ^ Zhao Y, Araki S, Wu J, Teramoto T, Chang YF, Nakano M, et al. An expanded palette of genetically encoded Ca²⁺ indicators. Science. September 2011, 333 (6051): 1888–91. PMC 3560286
. PMID 21903779. doi:10.1126/science.1208592.
- ^ Dana H, Sun Y, Mohar B, Hulse BK, Kerlin AM, Hasseman JP, et al. High-performance calcium sensors for imaging activity in neuronal populations and microcompartments. Nature Methods. July 2019, 16 (7): 649–657. PMID 31209382. S2CID 189927684. doi:10.1038/s41592-019-0435-6.
- ^ Yang, Helen H.; St-Pierre, François. Genetically Encoded Voltage Indicators: Opportunities and Challenges. Journal of Neuroscience. 2016-09-28, 36 (39): 9977–9989. ISSN 0270-6474. PMC 5039263
. PMID 27683896. doi:10.1523/JNEUROSCI.1095-16.2016 (英语).
- ^ Nguyen JP, Shipley FB, Linder AN, Plummer GS, Liu M, Setru SU, et al. Whole-brain calcium imaging with cellular resolution in freely behaving Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America. February 2016, 113 (8): E1074-81. Bibcode:2016PNAS..113E1074N. PMC 4776509
. PMID 26712014. arXiv:1501.03463
. doi:10.1073/pnas.1507110112
.
- ^ Muto A, Ohkura M, Kotani T, Higashijima S, Nakai J, Kawakami K. Genetic visualization with an improved GCaMP calcium indicator reveals spatiotemporal activation of the spinal motor neurons in zebrafish. Proceedings of the National Academy of Sciences of the United States of America. March 2011, 108 (13): 5425–30. Bibcode:2011PNAS..108.5425M. PMC 3069178
. PMID 21383146. doi:10.1073/pnas.1000887108
.
- ^ Muto A, Kawakami K. Prey capture in zebrafish larvae serves as a model to study cognitive functions. Frontiers in Neural Circuits. 2013, 7: 110. PMC 3678101
. PMID 23781176. doi:10.3389/fncir.2013.00110
(English).
- ^ Parker MO, Brock AJ, Walton RT, Brennan CH. The role of zebrafish (Danio rerio) in dissecting the genetics and neural circuits of executive function. Frontiers in Neural Circuits. 2013, 7: 63. PMC 3619107
. PMID 23580329. doi:10.3389/fncir.2013.00063
(English).
- ^ Chen Q, Cichon J, Wang W, Qiu L, Lee SJ, Campbell NR, et al. Imaging neural activity using Thy1-GCaMP transgenic mice. Neuron. October 2012, 76 (2): 297–308. PMC 4059513
. PMID 23083733. doi:10.1016/j.neuron.2012.07.011.
- ^ Peters AJ, Chen SX, Komiyama T. Emergence of reproducible spatiotemporal activity during motor learning. Nature. June 2014, 510 (7504): 263–7. Bibcode:2014Natur.510..263P. PMID 24805237. S2CID 4463927. doi:10.1038/nature13235.
- ^ Ziv Y, Burns LD, Cocker ED, Hamel EO, Ghosh KK, Kitch LJ, et al. Long-term dynamics of CA1 hippocampal place codes. Nature Neuroscience. March 2013, 16 (3): 264–6. PMC 3784308
. PMID 23396101. doi:10.1038/nn.3329.
- ^ Lin MZ, Schnitzer MJ. Genetically encoded indicators of neuronal activity. Nature Neuroscience. August 2016, 19 (9): 1142–53. PMC 5557009
. PMID 27571193. doi:10.1038/nn.4359.
- ^ Cichon J, Gan WB. Branch-specific dendritic Ca(2+) spikes cause persistent synaptic plasticity. Nature. April 2015, 520 (7546): 180–5. Bibcode:2015Natur.520..180C. PMC 4476301
. PMID 25822789. doi:10.1038/nature14251.
- ^ Jones JR, Simon T, Lones L, Herzog ED. SCN VIP Neurons Are Essential for Normal Light-Mediated Resetting of the Circadian System. The Journal of Neuroscience. September 2018, 38 (37): 7986–7995. PMC 6596148
. PMID 30082421. doi:10.1523/JNEUROSCI.1322-18.2018.
- ^ Han SY, Clarkson J, Piet R, Herbison AE. Optical Approaches for Interrogating Neural Circuits Controlling Hormone Secretion. Endocrinology. November 2018, 159 (11): 3822–3833. PMID 30304401. S2CID 52954832. doi:10.1210/en.2018-00594
.
- ^ Clarkson J, Han SY, Piet R, McLennan T, Kane GM, Ng J, et al. Definition of the hypothalamic GnRH pulse generator in mice. Proceedings of the National Academy of Sciences of the United States of America. November 2017, 114 (47): E10216–E10223. Bibcode:2017PNAS..11410216C. PMC 5703322
. PMID 29109258. doi:10.1073/pnas.1713897114
.
- ^ Gunaydin LA, Grosenick L, Finkelstein JC, Kauvar IV, Fenno LE, Adhikari A, et al. Natural neural projection dynamics underlying social behavior. Cell. June 2014, 157 (7): 1535–51. PMC 4123133
. PMID 24949967. doi:10.1016/j.cell.2014.05.017 (English).
- ^ Kaestner L, Scholz A, Tian Q, Ruppenthal S, Tabellion W, Wiesen K, et al. Genetically encoded Ca2+ indicators in cardiac myocytes. Circulation Research. May 2014, 114 (10): 1623–39. PMID 24812351. S2CID 10856784. doi:10.1161/CIRCRESAHA.114.303475
.
- ^ Chi NC, Shaw RM, Jungblut B, Huisken J, Ferrer T, Arnaout R, et al. Genetic and physiologic dissection of the vertebrate cardiac conduction system. PLOS Biology. May 2008, 6 (5). PMC 2430899
. PMID 18479184. doi:10.1371/journal.pbio.0060109
.
- ^ Bonder DE, McCarthy KD. Astrocytic Gq-GPCR-linked IP3R-dependent Ca2+ signaling does not mediate neurovascular coupling in mouse visual cortex in vivo. The Journal of Neuroscience. September 2014, 34 (39): 13139–50. PMC 4172806
. PMID 25253859. doi:10.1523/JNEUROSCI.2591-14.2014.
- ^ Greer PL, Bear DM, Lassance JM, Bloom ML, Tsukahara T, Pashkovski SL, et al. A Family of non-GPCR Chemosensors Defines an Alternative Logic for Mammalian Olfaction. Cell. June 2016, 165 (7): 1734–1748. PMC 4912422
. PMID 27238024. doi:10.1016/j.cell.2016.05.001.