跳至內容

K型主序星

維基百科,自由的百科全書

橙矮星,也稱橙色主序星,即K型主序星(KV),是主序帶(以為燃料)上光譜類型為K、亮度分類為V的恆星。這些恆星的大小介於M型主序星G型主序星之間,質量是太陽質量的0.5至0.9倍,表面溫度在3,900至5,300K[1]K型主序星在宇宙中的占比約16%—18%左右。[2]

此種恆星的例子有半人馬座α星B印第安座 ε[3]奎宿增三HD 13445牛宿增十天苑四等。

宜居性和爭議

[編輯]

這種恆星是部分學者在尋找在地球之外的生命時最感興趣的,因為它們停留在主序星階段上穩定的時間很長(早K型約150—300億年,高金屬豐度的晚K型主序星能達到略多於700億年[4][5][6],相比較之下太陽只有約105億年的壽命且常簡化為100億年[7]),使環繞其運行的類地行星有更充足的機會產生具備適居性環境[8]。學術界和天文愛好者中的相當一部分流行觀點都認為K型主序星是最為理想的選項,主要是基於其較長的壽命、極弱的紫外輻射以及不像紅矮星有着嚴重的耀斑活動和潮汐鎖定問題,相關的常用詞彙則有「橙矮星優勢(K Dwarf Advantage)」和「金髮姑娘(Goldilocks)」,但21世紀以來的相關研究也存在較大爭議。[9][10][11][12][13]

潛在問題

[編輯]

21世紀的新研究表明,紫外輻射是一把雙刃劍,過強會破壞生態系統,過弱則不能驅動複雜有機物等的產生與演化[14][15],只有0.8倍太陽質量至1.8倍太陽質量的恆星的紫外宜居帶和可見光宜居帶能夠重合[16](考慮恆星自轉快使得輻射向恆星兩極集中而減輕恆星赤道面的輻射,則可以上延至太陽質量的2.2倍,但對天生紫外輻射驅動不足的恆星則無用[17])。大多數K型主序星的質量都不到太陽質量的0.8倍,近紫外輻射過弱、不利於分子變異和藉助近紫外合成某些有機物,反而成為其缺點。[16][18]僅一些特定情況的K型主序星,依靠適度的耀斑活動等方式額外增加紫外線輻射因素,使得紫外光宜居帶外延至與可見光宜居帶有所相交(理論上紅矮星也可以依靠耀斑活動來外延紫外宜居帶,只是耀斑過重則適得其反),或許可以提高孕育生命的可能性。[16][14]

K型主序星的恆星風耀斑活動對宜居帶的破壞比F型主序星G型主序星要嚴重(與一些刻板印象不同,其實在恆星活動方面最溫和的反而是A型主序星,在A型主序星的基礎上增大或減小質量和亮度都會逐漸增加不穩定性[19][20][21],但是A型主序星吃虧在壽命偏短/演化時間急促和紫外輻射偏強,K型主序星雖然長壽但是實際上僅比紅矮星、早B、O和WR型恆星要溫和)[22][23][24][25],而K型主序星的劇烈活動的減慢速度和行星系統的演化速度比更大質量的恆星要緩慢,在相同年齡、等距離下,K型主序星的極紫外輻射(不同於近紫外輻射和其他紫外輻射極紫外輻射生物圈是純破壞性作用)是G型主序星的3—4倍(紅矮星則是10—100倍,考慮到紅矮星的宜居帶距離很近則更糟糕),X射線是G型主序星的2—3倍,如果再考慮上K型主序星的宜居帶更近,則破壞性更高[11][10][26][18][27][28][29]。尤其是靠近K/M邊界的K型主序星,雖然其壽命大多已經超過500億年,但是其不僅有紫外輻射驅動過少、宜居帶的恆星風過於嚴重的問題,而且其耀斑活動的劇烈程度也開始接近於紅矮星的水平[30][31][5][6],以及極易引發對宜居帶行星的潮汐鎖定[25],環境不容樂觀。

也有觀點認為,隨着宇宙年齡的不斷增大,在比較長的時間範圍內,K型主序星甚至紅矮星將會逐漸占據壓倒性優勢,即使其演化速度再慢、劇烈活動的衰減速度再慢,到了主序星階段的中後期都會越來越宜居(中年尤其晚年的K型主序星比G型主序星更溫和,甚至紅矮星到了主序星末期階段將變為藍矮星時也可能會十分宜居);但是目前的宇宙還很年輕(僅138.2億歲,年齡過小,多數恆星則只有數十億歲),K型主序星和紅矮星暫時還不充分具備相對於F/G型主序星(已經率先演化成熟)的優勢。[23][18][32]

參考資料

[編輯]
  1. ^ Empirical bolometric corrections for the main-sequence頁面存檔備份,存於網際網路檔案館), G. M. H. J. Habets and J. R. W. Heintze, Astronomy and Astrophysics Supplement 46 (November 1981), pp. 193–237.
  2. ^ Ledrew, Glenn. The Real Starry Sky. Journal of the Royal Astronomical Society of Canada. February 2001, 95: 32. Bibcode:2001JRASC..95...32L. 
  3. ^ SIMBAD, entries for Alpha Centauri B頁面存檔備份,存於網際網路檔案館) and Epsilon Indi頁面存檔備份,存於網際網路檔案館), accessed on line June 19, 2007.
  4. ^ K-type star
  5. ^ 5.0 5.1 I,Baraffe,G,et al.Evolutionary models for low-mass stars and brown dwarfs: Uncertainties and limits at very young ages[J].Astronomy & Astrophysics, 2002.
  6. ^ 6.0 6.1 Kippenhahn R , Weigert A .Stellar Structure and Evolution[J].北京大學出版社, 2013.DOI:10.1007/978-3-642-30304-3.
  7. ^ Aumer M , Binney J J .Kinematics and history of the solar neighbourhood revisited[J].Oxford University Press, 2009(3).DOI:10.1111/J.1365-2966.2009.15053.X.
  8. ^ Orange stars are just right for life頁面存檔備份,存於網際網路檔案館), retrieved on May 6, 2009.
  9. ^ Richey-Yowell, T., Barman, T. S., Loyd, R. O. P., Meadows, V. S., Schneider, A., and Shkolnik, E. L., 「The K Dwarf Advantage: Assessing the Habitability of Planets Orbiting K Stars」, HST Proposal, p. 15955, 2019.
  10. ^ 10.0 10.1 Richey-Yowell, T., 「Evaluating the K Dwarf Advantage through the Ultraviolet and X-ray Evolution of K Stars」, vol. 54, no. 5, Art. no. 102.254, 2022.
  11. ^ 11.0 11.1 Richey-Yowell, T., 「Do K Stars Really Have an Advantage? Assessing the Habitability of Planets around K Stars by their Ultraviolet Evolution」, in The Astrobiology Science Conference (AbSciCon) 2022, 2022, Art. no. 449-02.
  12. ^ Arney, Giada N.. 「The K Dwarf Advantage for Biosignatures on Directly Imaged Exoplanets.」 The Astrophysical Journal Letters 873 (2019): n. pag.
  13. ^ Richey-Yowell, Tyler et al. 「HAZMAT. VIII. A Spectroscopic Analysis of the Ultraviolet Evolution of K Stars: Additional Evidence for K Dwarf Rotational Stalling in the First Gigayear.」 The Astrophysical Journal 929 (2022): n. pag.
  14. ^ 14.0 14.1 Oishi M , Kamaya H .A SIMPLE EVOLUTIONAL MODEL OF THE UV HABITABLE ZONE AND THE POSSIBILITY OF PERSISTENT LIFE EXISTENCE: THE EFFECTS OF MASS AND METALLICITY[J].Astrophysical Journal, 2016, 833(2):293.DOI:10.3847/1538-4357/833/2/293.
  15. ^ Sparrman, V. (2022). Post-Main Sequence Habitability for Outer Solar System Moons (Dissertation). Retrieved from https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-477353
  16. ^ 16.0 16.1 16.2 Guo J , Zhang F , Zhang X ,et al.Habitable Zones and UV Habitable Zones around Host Stars[J].Astrophysics & Space Science, 2010, 325(1):25.DOI:10.1007/s10509-009-0173-9.
  17. ^ Ahlers J P , Fromont E F , Kopparappu R ,et al.The Habitable Zones of Rapidly Rotating Main Sequence A/F Stars[J].The Astrophysical Journal, 2022, 928(1):35 (9pp).DOI:10.3847/1538-4357/ac5596.
  18. ^ 18.0 18.1 18.2 Lingam M , Loeb A .Is Life Most Likely Around Sun-like Stars?[J].Journal of Cosmology & Astroparticle Physics, 2017.DOI:10.1088/1475-7516/2018/05/020.
  19. ^ Pedersen, M. G., Antoci, V., Korhonen, H., White, T. R., Jessen-Hansen, J., Lehtinen, J., et al. (2017). Do A-type stars flare? Mon. Not. R. Astron. Soc. 466, 3060–3076. doi: 10.1093/mnras/stw3226
  20. ^ C. Schröder, Schmitt J H M M .X-ray emission from A-type stars[J].Astronomy & Astrophysics, 2007, 475(2):677-684.DOI:10.1051/0004-6361:20077429.
  21. ^ Wood, B. E., Müller, H.-R., Redfield, S., & Edelman, E. 2014, ApJ, 781, L33 [NASA ADS] [CrossRef] [Google Scholar]
  22. ^ Wood B E , Mueller H R , Zank G P ,et al.Measured Mass Loss Rates of Solar-like Stars as a Function of Age and Activity[J].The Astrophysical Journal, 2002, 574(1):412-425.DOI:10.1086/340797.
  23. ^ 23.0 23.1 Johnstone C P , Bartel M ,M. Güdel.The active lives of stars: A complete description of the rotation and XUV evolution of F, G, K, and M dwarfs[J].Astronomy and Astrophysics, 2021.DOI:10.1051/0004-6361/202038407.
  24. ^ Wood B E .Implications of Recent Stellar Wind Measurements[J].Journal of Physics Conference Series, 2018, 1100.DOI:10.1088/1742-6596/1100/1/012028.
  25. ^ 25.0 25.1 Kopparapu R K , Ramirez R , Kasting J F ,et al.HABITABLE ZONES AROUND MAIN-SEQUENCE STARS: NEW ESTIMATES (vol 765, pg 131, 2013)[J].The Astrophysical Journal, 2013, 770(1):82.DOI:10.1088/0004-637X/770/1/82.
  26. ^ Airapetian, Vladimir S. et al. 「Impact of space weather on climate and habitability of terrestrial-type exoplanets.」 International Journal of Astrobiology 19 (2019): 136 - 194.
  27. ^ Richey-Yowell, T., Shkolnik, E.L., Schneider, A.C., Osby, E., Barman, T.S., & Meadows, V.S. (2019). HAZMAT. V. The Ultraviolet and X-Ray Evolution of K Stars. The Astrophysical Journal, 872.
  28. ^ Variability and Habitability – UV/X-ray emissions
  29. ^ Zhu, E., & Preibisch, T. (2025). X-ray activity of nearby G-, K-, and M-type stars and implications for planet habitability around M stars. Astronomy & Astrophysics.
  30. ^ James C , Wheatland M S , Kai Y .Superflare rate variability on M dwarfs[J].Monthly Notices of the Royal Astronomical Society, 2024(1):1.DOI:10.1093/mnras/stae818.
  31. ^ Chen H , Zhan Z , Youngblood A ,et al.Persistence of Flare-Driven Atmospheric Chemistry on Rocky Habitable Zone Worlds[J]. 2021.DOI:10.1038/s41550-020-01264-1.
  32. ^ Loeb, Abraham et al. 「Relative likelihood for life as a function of cosmic time.」 Journal of Cosmology and Astroparticle Physics 2016 (2016): 040 - 040.

相關條目

[編輯]