跳至內容

G型主序星

本頁使用了標題或全文手工轉換
維基百科,自由的百科全書
太陽是黃矮星的標準範例。

黃矮星,也稱黃色主序星,在天文學上的正式名稱為GV恆星,是光譜型態為G,發光度為V主序星。這一類恆星的質量大約在0.8至1.2太陽質量,表面的有效溫度在5,300至6,000K[1]。與其他的主序星一樣,GV恆星在核心進行將融合成核融合反應。[2]對於地球來說太陽是最著名的,也是最易見到的GV恆星,每秒鐘將大約6億噸的轉換成,將400萬噸的質量轉換成能量[3][4]其他的著名GV恆星,還有南門二(半人馬座α星A)、鯨魚座τ王良三下台二下台增一飛馬座51[5][6][7]G型主序星在宇宙中的占比約7.5%—8%左右,且大多質量比太陽小。[8]

黃矮星其實是一個錯誤的名稱,因為光譜類型為G的恆星實際顏色是從白色到黃色的,像太陽在早期的顏色是白色,只有到晚期才會成為黃色。[9]參考光譜分類的顏色與光譜圖,太陽實際上是白黃色的(當前太陽為G2V型主序星[10],如果不做顏色修飾,在太空中看起來太陽的顏色當為色號#fff5f2[9]),而在地平線附近的太陽呈現紅色,則是大氣層的瑞利散射造成的。

一顆G型主序星的壽命跨度通常大約在90億年到180億年左右(太陽壽命約105億年~109億年,通常簡化為約100億年[11][12][13][14],受金屬豐度等因素影響,最短壽的G型主序星壽命約79億年或更短,最長壽的G型主序星的壽命可以達到200多億年)[15][11][16][17][18][19],當它耗盡了核心的氫燃料之後,這一類恆星便會膨脹許多倍,發展成一顆紅巨星,其紅巨星階段會停留在10億年以上[20][21],典型案例比如畢宿五(金牛座α)。[22]最後,這顆紅巨星會拋掉它外層的氣體,成為行星狀星雲,而這時裸露出來的核心便是一顆體積小、密度高的白矮星,在往後的歲月中只會持續的降溫與壓縮。[2]

宜居性

[編輯]

由於太陽這樣的G2V恆星養育了地球生物圈,G型主序星是公認的、已得到實證的有利於孕育複雜生命的恆星。太陽作為早G型主序星,其質量和亮度超過宇宙中95%以上的恆星,壽命也短於95%以上的恆星(太陽的金屬豐度偏高但不是極高,恆星自轉速度則較慢,即使在同等質量恆星中的壽命也僅為中上水平而沒有顯著優勢),但人類卻正好出現在這樣一顆恆星的行星上,顯然不完全是巧合。早期研究曾經認為紅矮星由於壽命最長因此其行星系統的演化最為理想,在發現紅矮星耀斑活動和潮汐鎖定等問題後,流行觀點則認為K型主序星是最適合孕育生命的恆星。但是K型主序星在數量上仍然遠多於G型主序星,甚至晚G型主序星也遠多於早G型主序星;即便認為部分F型主序星和少數A型主序星也能孕育智慧生命,然而隨著恆星質量增加、其對應數量呈指數級減少;這樣太陽顯然屬於宜居恆星中明顯偏大、偏亮、偏短壽的類型,在概率學上就難以解釋為何人類正好出現在早G型主序星的行星上。

一些研究認為,紫外輻射是一把雙刃劍,過強會破壞生態系統,過弱則不能驅動複雜有機物等的產生與演化。中等質量恆星的紫外輻射強於小質量恆星反而可能加速分子變異,甚至還可以給生命直接提供光解、體內合成特定分子的額外能量來源[23][24][25]);小質量恆星由於缺少足夠的紫外輻射驅動,不得不專門依靠適度的耀斑活動來補充紫外輻射,這種補充極為有限,反而加大了孕育和演化生命的難度[25][26][27]。晚F—早G型主序星的紫外宜居帶和可見光宜居帶的重合度則是最高的,而這些恆星的壽命通常在60—150億年以上,宜居帶星球的演化時間也完全來得及生物進化。[25][28][29][30][31][32][33]且晚F—早G型主序星的恆星風耀斑活動對宜居帶的破壞比晚G/K/M型主序星要輕[34][35],也完全不用擔心潮汐鎖定(尤其是從晚K型主序星開始潮汐鎖定概率大幅提高)[36]K型主序星在年輕時期比G型主序星要更為活動劇烈(K型主序星的中後期階段確實更溫和,但目前宇宙年齡太低,K型主序星壽命較長因此大多目前還處在演化的早期階段),G型主序星的活動隨著年齡增長的衰減要更快;同年齡的K型主序星在「等距離」下,極紫外輻射(EUV,對驅動有機物變異意義遠不如普通的紫外輻射,卻具有破壞性)是同年齡的G型主序星的3—4倍(X射線則是G型主序星的2倍多),如果考慮上小質量恆星的宜居帶更近則破壞更嚴重[33][35][25][27][37][34][38]。並不是K型主序星甚至紅矮星就一定不好,而是小質量恆星壽命過長會導致其活動衰減的演化和行星系統的演化都偏慢,又由於宇宙目前年齡較小(僅138.2億歲,且多數恆星只有幾十億歲),因此晚F—早G型主序星可能正好是當前演化得最成熟的一批恆星。[33][35][25][27][37][39]

此外,在恆星演化過程中,主序星階段,A/F型主序星由於在不斷膨脹散熱、亮度不斷輕微上升的同時則光譜/表面溫度不斷地慢慢往下掉;K/M型主序星由於膨脹散熱程度過輕、亮度不斷上升且光譜/表面溫度也不斷上升;只有G型主序星的光譜/表面溫度的變化相對最為穩定(往往會先上升後下降,但起伏最輕微,且先升後降也使得主序星階段的初期和末期的光譜/表面溫度大體一致),儘管其亮度也在慢慢上升。[40][41][42]

參考資料

[編輯]
  1. ^ Empirical bolometric corrections for the main-sequence頁面存檔備份,存於網際網路檔案館), G. M. H. J. Habets and J. R. W. Heintze, Astronomy and Astrophysics Supplement 46 (November 1981), pp. 193–237.
  2. ^ 2.0 2.1 Stellar Evolution: Main Sequence to Giant頁面存檔備份,存於網際網路檔案館), class notes, Astronomy 101, Valparaiso University, accessed on line 2007-06-19.
  3. ^ Why Does The Sun Shine?頁面存檔備份,存於網際網路檔案館), lecture, Barbara Ryden, Astronomy 162, Ohio State University, accessed on line 2007-06-19.
  4. ^ Sun頁面存檔備份,存於網際網路檔案館), entry at ARICNS, accessed 2007-06-19.
  5. ^ Alpha Centauri A頁面存檔備份,存於網際網路檔案館), SIMBAD query result. Accessed on line 2007-12-04.
  6. ^ Tau Ceti頁面存檔備份,存於網際網路檔案館), SIMBAD query result. Accessed on line 2007-12-04.
  7. ^ 51 Pegasi頁面存檔備份,存於網際網路檔案館), SIMBAD query result. Accessed on line 2007-12-04.
  8. ^ Ledrew, Glenn. The Real Starry Sky. Journal of the Royal Astronomical Society of Canada. February 2001, 95: 32. Bibcode:2001JRASC..95...32L. 
  9. ^ 9.0 9.1 What Color Are the Stars?頁面存檔備份,存於網際網路檔案館), Mitchell N. Charity's webpage, accessed 2007-11-25
  10. ^ Garrison, R. F. A Hierarchy of Standards for the MK Process. Astronomical Society of the Pacific. 1994, 60: 3. Bibcode:1994ASPC...60....3G. 
  11. ^ 11.0 11.1 Basinger, C., Pinsonneault, M.H., Bastelberger, S.T., Gaudi, B.S., & Domagal-Goldman, S. (2024). Constraints on the early luminosity history of the Sun: Applications to the faint young Sun problem. Monthly Notices of the Royal Astronomical Society.
  12. ^ Aumer M , Binney J J .Kinematics and history of the solar neighbourhood revisited[J].Oxford University Press, 2009(3).DOI:10.1111/J.1365-2966.2009.15053.X.
  13. ^ Rushby AJ, Claire MW, Osborn H, Watson AJ. Habitable zone lifetimes of exoplanets around main sequence stars. Astrobiology. 2013 Sep;13(9):833-49. doi: 10.1089/ast.2012.0938. PMID 24047111.
  14. ^ Christensen-Dalsgaard, J. (2020). Solar structure and evolution. Living Reviews in Solar Physics, 18, 1-189.
  15. ^ G-type star
  16. ^ Nguyen C T , Costa G , Bressan A ,et al.PARSEC V2.0: Rotating tracks and isochrones for seven addtional metallicities in the range Z=0.0001-0.03[J].2025.
  17. ^ Feltzing S , Lundstrom I , Bensby T .Elemental abundance trends in the Galactic thin and thick disks as traced by nearby F and G dwarf stars[J].Astronomy & Astrophysics A European Journal, 2003, 410(2):págs. 527-552.DOI:10.1051/0004-6361:20031213.
  18. ^ Van Saders J L , Pinsonneault M H .Fast Star, Slow Star; Old Star, Young Star: Subgiant Rotation as a Population and Stellar Physics Diagnostic[J].Astrophysical Journal, 2013, 776(2):201-201.DOI:10.1088/0004-637X/776/2/67.
  19. ^ Amard L , Matt S P .The Impact of Metallicity on the Evolution of Rotation and Magnetic Activity of Sun-Like Stars[J].The Astrophysical Journal, 2020, 889.DOI:10.3847/1538-4357/ab6173.
  20. ^ Hurley, J. R.; Pols, O. R.; Tout, C. A. Comprehensive analytic formulae for stellar evolution as a function of mass and metallicity. Monthly Notices of the Royal Astronomical Society. 1 July 2000, 315 (3): 543–569. Bibcode:2000MNRAS.315..543H. S2CID 18523597. arXiv:astro-ph/0001295可免費查閱. doi:10.1046/j.1365-8711.2000.03426.x可免費查閱. 
  21. ^ Evolution from the Main Sequence to Red Giants | Astronomy. courses.lumenlearning.com. [2022-04-22]. 
  22. ^ SIMBAD, entry頁面存檔備份,存於網際網路檔案館) for Aldebaran, accessed on line 2007-06-19.
  23. ^ Haqq-Misra J .Does the Evolution of Complex Life Depend on the Stellar Spectral Energy Distribution?[J].AsBio, 2019, 19.DOI:10.1089/ast.2018.1946.
  24. ^ Schlecker M ,Dániel Apai, Affholder A ,et al.Bioverse: Potentially Observable Exoplanet Biosignature Patterns under the UV Threshold Hypothesis for the Origin of Life[J].IOP Publishing Ltd, 2025.DOI:10.3847/1538-4357/adc8a9.
  25. ^ 25.0 25.1 25.2 25.3 25.4 Lingam M , Loeb A .Is Life Most Likely Around Sun-like Stars?[J].Journal of Cosmology & Astroparticle Physics, 2017.DOI:10.1088/1475-7516/2018/05/020.
  26. ^ Buccino A P , Lemarchand G A , Mauas P J D .Ultraviolet radiation constraints around the circumstellar habitable zones[J].Icarus, 2005, 183(2):491-503.DOI:10.1016/j.icarus.2006.03.007.
  27. ^ 27.0 27.1 27.2 Li, X., Wang, S., Ma, J., Han, H., Huang, Y., & Liu, J. (2025). Evolution of Stellar Activity and Habitable Zone. I. Ultraviolet Emission of Dwarfs in Open Clusters and Field Stars. The Astrophysical Journal Supplement Series, 281.
  28. ^ Guo J , Zhang F , Zhang X ,et al.Habitable Zones and UV Habitable Zones around Host Stars[J].Astrophysics & Space Science, 2010, 325(1):25.DOI:10.1007/s10509-009-0173-9.
  29. ^ Rugheimer, S., Rugheimer, S., Segura, A., Kaltenegger, L., & Sasselov, D.D. (2015). UV SURFACE ENVIRONMENT OF EARTH-LIKE PLANETS ORBITING FGKM STARS THROUGH GEOLOGICAL EVOLUTION. The Astrophysical Journal, 806.
  30. ^ Oishi M , Kamaya H .A SIMPLE EVOLUTIONAL MODEL OF THE UV HABITABLE ZONE AND THE POSSIBILITY OF PERSISTENT LIFE EXISTENCE: THE EFFECTS OF MASS AND METALLICITY[J].Astrophysical Journal, 2016, 833(2):293.DOI:10.3847/1538-4357/833/2/293.
  31. ^ Sparrman, V. (2022). Post-Main Sequence Habitability for Outer Solar System Moons (Dissertation). Retrieved from https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-477353
  32. ^ Ahlers J P , Fromont E F , Kopparappu R ,et al.The Habitable Zones of Rapidly Rotating Main Sequence A/F Stars[J].The Astrophysical Journal, 2022, 928(1):35 (9pp).DOI:10.3847/1538-4357/ac5596.
  33. ^ 33.0 33.1 33.2 Sato S , Cuntz M , Guerra Olvera C M ,et al.Habitability around F-type stars[J].International Journal of Astrobiology, 2013, 13(3):244-258.DOI:10.1017/S1473550414000020.
  34. ^ 34.0 34.1 Airapetian, Vladimir S. et al. 「Impact of space weather on climate and habitability of terrestrial-type exoplanets.」 International Journal of Astrobiology 19 (2019): 136 - 194.
  35. ^ 35.0 35.1 35.2 Johnstone C P , Bartel M ,M. Güdel.The active lives of stars: A complete description of the rotation and XUV evolution of F, G, K, and M dwarfs[J].Astronomy and Astrophysics, 2021.DOI:10.1051/0004-6361/202038407.
  36. ^ Shakespeare, C.J., & Steffen, J.H. (2023). Day and night: habitability of tidally locked planets with sporadic rotation. Monthly Notices of the Royal Astronomical Society.
  37. ^ 37.0 37.1 Zhu, E., & Preibisch, T. (2025). X-ray activity of nearby G-, K-, and M-type stars and implications for planet habitability around M stars. Astronomy & Astrophysics.
  38. ^ Variability and Habitability – UV/X-ray emissions
  39. ^ Loeb, Abraham et al. 「Relative likelihood for life as a function of cosmic time.」 Journal of Cosmology and Astroparticle Physics 2016 (2016): 040 - 040.
  40. ^ John,N,Bahcall,et al.Solar Models: Current Epoch and Time Dependences, Neutrinos, and Helioseismological Properties[J].The Astrophysical Journal, 2001, 555(2):990-990.DOI:10.1086/321493.
  41. ^ Schroder, K., & Smith, R.C. (2008). Distant future of the Sun and Earth revisited. Monthly Notices of the Royal Astronomical Society, 386, 155-163.
  42. ^ Kippenhahn R , Weigert A , Weiss A .Evolution on the Main Sequence[J].Springer Berlin Heidelberg, 2012.DOI:10.1007/978-3-642-30304-3_30.

相關條目

[編輯]

外部連結

[編輯]