跳转到内容

B型主序星

维基百科,自由的百科全书
位于船底座海石一是组联星,其中拥有一颗黄色的B型主序星。

B型主序星(B V),也称蓝白色主序星,是燃烧恒星光谱分类为B,光度分类为V的主序星。这一类恒星的质量通常介于太阳的2.5至18倍左右[1][2]表面温度载10,000至30,000K[3],寿命跨度很大,大多在1000万年至9亿年左右[4][5][6][7][8]。B型恒星是非常明亮的蓝色恒星。它们的光谱中有中性的氦线,在B2的类型中最为明显,以及温和的氢线。著名的B型主序星有瑶光小斗二东咸二南船三鸟喙四A大陵五A轩辕十四A[9]。B型主序星在恒星中的占比为约0.125%[10]

简介

[编辑]

这种恒星的哈佛光谱分类法刊登在哈佛恒星测光表修订版。在初始的严格定义上,B型恒星与O型恒星的光谱存在明确界限,B型恒星的蓝紫色部分缺少一条氦的电离谱线,也就是没有He II 线(氦原子失去两个电子的状态)[11][12]。所有的光谱类型,包括B型,都有细分的数值尾码,表示它们与下一种类型接近的程度,因此B2是B型十分级中的第三级,比B0更接近A型[13][12]

但是,之后更精细的光谱显示B0有氦的电离谱线;同样的,A0也有微弱的中性氦线。随后细分的光谱类型基于特定频率的吸收线在恒星中强度,或是比较不同谱线的强度。例如,在MK分类系统中,波长438.7奈米的谱线强度比420.0奈米强的归类为B0型[14]。氢的巴耳末系谱线在B型中逐渐增强,并在A2型达到峰值(最大值)。电离的硅现被用来硅分B型的恒星,同时镁线被用来区分温度上的差异[12]

B型恒星在大气层之外没有日冕层,并且缺乏对流层。它们相比于较小的恒星(例如太阳),有更高的质量流失率,恒星风的速度大约是3,000公里/秒[15][16]。B型主序星的能量来源是CNO循环热核聚变。因为CNO循环对温度非常敏感,能量的来源大量的集中在这类恒星的核心,结果是对流层出现在核心。这导致核聚变产生的氦稳定的与氢燃料混合在一起[17]。许多B型恒星有高速的自转,恒星赤道的转动速度大多在200公里/秒—350公里/秒[18][19]

有些B型恒星,像是分类为B0至B3的恒星,显示出有非常强的中性氦谱线。这些化学特殊恒星被称为强氦恒星,通常他们在光球层会有强大的磁场。对照之下,也有弱氦恒星,它们的氦线强度不足并且有很强的氢光谱。其他化学异常的B型恒星有汞-锰星,它们的光谱类型是B7至B9。还有有着途出的氢发射谱线的Be星[20]

寿命、行星系统和宜居带

[编辑]

B型主序星虽然寿命短,但已经来得及支撑其行星系统的演化与成矿。B型主序星的寿命通常在几千万年至几亿年,中B和晚B型主序星可以在金属丰度高、恒星自转极快(此时金属丰度高提高不透明度、降低表面温度光度以延长寿命,自转速度快则促进更多中外层氢气进入核心的碳氮氧循环区、提高对氢气的利用率)的加持下延寿;假如正好3倍太阳质量,通常寿命6亿年左右,即使非质量因素都最为有利,极端寿命上限也就10亿年左右(且B型主序星的延寿效果实际上已经不如A/F型主序星);而对于约2.5倍太阳质量的靠近B/A边界的B9.5V的恒星,其主序星阶段的理论极端寿命可以被延长到11亿年~13亿年以上(天文研究资料例如astro.vaporia.com甚至将B型主序星的寿命上限计算为15亿年以上[5][21][22][23]。对早B型主序星(B0V、B1V和部分B2V)而言,自转速度快仍然可以延寿,但是金属丰度高反而可能缩短寿命(大质量恒星的金属丰度过高导致恒星核心的碳氮氧元素浓度太大,而早B型主序星的核心温度又过高,碳氮氧循环核聚变过程反而失控而加速;以及金属丰度过高导致其恒星风等因素下质量损失过重,其损失的又是以外壳的氢层燃料为主,也造成缩短寿命;虽然质量受损而减小又延长寿命,但往往冲抵不了之前的寿命缩短[24];此时低金属丰度+高速自转可能为延寿效果最长的组合),靠近O/B边界的B0V的寿命通常在600万年至1500万年左右。[21][23][4][6][7][8][25][26][22]

大质量恒星的初始岩屑盘质量更大,在相同金属元素比例下则金属总质量更大、固体供给更充足,可以提高固体碰撞增长的速度、从而提高行星/卫星拥有的金属核质量比例,在其他条件相当时加速岩石星球的核芯增长与行星/卫星胚胎形成。这对该类恒星的行星系统的初始演化和富集矿物具有优势[27],之后则劣势明显——主序星寿命太短、行星系统的演化时间不足,更强的恒星风A型主序星恒星风耀斑活动比F/G/K/M恒星更弱,但从B型主序星开始则恒星风和恒星剧烈活动逐渐显著增强[16][28][29][30][31][32])和极高频率电磁辐射重力昏暗虽然可以减轻恒星赤道面的紫外辐射表面温度,但只能让A型主序星F型主序星变得宜居,难以缓解2.5倍以上太阳质量的B型恒星的紫外辐射X射线[33][34])对行星大气层和岩石层的破坏较为严重。[35][23]

目前已发现的拥有系外行星的B型主序星有HD 142250(HIP 77900,约3.74倍太阳质量,B6V主序脉动变星,其伴星介于行星褐矮星之间)、HD 195689KELT-9)、HD 129116(HIP 71865,是双星系统且主星质量为太阳的约6倍左右、光谱为B3V,b Centauri b为其行星)、HIP 78530HIP 79098HD 100546等。[36][37][38][27]由于观测条件的限制(类地行星对相对较大质量恒星的引力扰动和光线扰动都太弱,难以观测),目前发现的大多为类木行星,但不排除其有大质量的岩石卫星。约2.75倍太阳质量的B9V恒星的宜居带距离大约在 4—9 天文单位 左右,假如位于宜居带外侧且初始温室气体浓度较高、此后逐渐下降,在极端有利条件(假设主序星在极高金属丰度、极快恒星自转下延寿,且宜居带外侧星球的温室气体浓度变化合理,相当于把主序星阶段的90%以上的时间都用上)下可能有9~11亿年以上的演化时间,但以地球的生命演化速度来看,即便如此也仅能有类似于细菌古菌蓝藻等的原始生物;约18倍太阳质量的B0V恒星的宜居带距离大约在 110—250 天文单位左右,即使在极端有利条件下也仅有1500万年左右的演化时间,其宜居带只具有天文学意义而几乎没有行星学/生命学意义。[39][40][25][26]

相关条目

[编辑]

参考资料

[编辑]
  1. ^ Pecaut, Mark J.; Mamajek, Eric E. Intrinsic Colors, Temperatures, and Bolometric Corrections of Pre-main-sequence Stars. The Astrophysical Journal Supplement Series. 1 September 2013, 208 (1): 9. Bibcode:2013ApJS..208....9P. ISSN 0067-0049. S2CID 119308564. arXiv:1307.2657可免费查阅. doi:10.1088/0067-0049/208/1/9. 
  2. ^ Mamajek, Eric. A Modern Mean Dwarf Stellar Color and Effective Temperature Sequence. University of Rochester, Department of Physics and Astronomy. 2 March 2021 [5 July 2021]. 
  3. ^ Habets, G. M. H. J.; Heintze, J. R. W. Empirical bolometric corrections for the main-sequence. Astronomy and Astrophysics Supplement. November 1981, 46: 193–237 [2009-09-21]. (原始内容存档于2019-07-17). , Tables VII and VIII.
  4. ^ 4.0 4.1 Fritzewski D J , Aerts C , Mombarg J S G ,et al.Age uncertainties of red giants due to cumulative rotational mixing of progenitors calibrated by asteroseismology[J].ASTRONOMY & ASTROPHYSICS, 2024, 684(1):13.DOI:10.1051/0004-6361/202449300.
  5. ^ 5.0 5.1 B-type star
  6. ^ 6.0 6.1 B. Pérez-Rendón,G. García-Segura,N. Langer.Evolutionary effects of rotation in massive stars and their circumstellar medium[J].Revista Mexicana De Fisica, 2008, 54.DOI:10.1088/0034-4885/71/11/116501.
  7. ^ 7.0 7.1 Meynet G , Maeder A .Stellar Evolution with Rotation V: Changes in all the Outputs of Massive Star Models[J].Astronomy & Astrophysics, 2000, 361(1):101-120.DOI:doi:10.1007/s001590000011.
  8. ^ 8.0 8.1 André,Maeder,Georges,等.Rotating massive stars: From first stars to gamma ray bursts[J].Reviews of Modern Physics, 2012.DOI:10.1103/RevModPhys.84.25.
  9. ^ SIMBAD, entries on Regulus页面存档备份,存于互联网档案馆) and Algol A页面存档备份,存于互联网档案馆), accessed June 19, 2007.
  10. ^ Ledrew, Glenn. The Real Starry Sky. Journal of the Royal Astronomical Society of Canada. February 2001, 95: 32. Bibcode:2001JRASC..95...32L. 
  11. ^ Gray, R O . "A Digital Spectral Classification Atlas.".
  12. ^ 12.0 12.1 12.2 Gray, C. Richard O.; Corbally, J. Stellar Spectral Classification. Princeton University Press. 2009: 115–122. ISBN 0691125112. 
  13. ^ Pickering, Edward Charles. Revised Harvard photometry : a catalogue of the positions, photometric magnitudes and spectra of 9110 stars, mainly of the magnitude 6.50, and brighter observed with the 2 and 4 inch meridian photometers. Annals of the Astronomical Observatory of Harvard College. 1908, 50. Bibcode:1908AnHar..50....1P. 
  14. ^ Morgan, William Wilson; Keenan, Philip Childs; Kellman, Edith. An atlas of stellar spectra, with an outline of spectral classification. Chicago, Ill: The University of Chicago press. 1943. Bibcode:1943QB881.M6........ 
  15. ^ Aschenbach, B.; Hahn, Hermann-Michael; Truemper, Joachim. Hermann-Michael Hahn , 编. The invisible sky: ROSAT and the age of X-ray astronomy. Springer. 1998: 76. ISBN 0387949283. 
  16. ^ 16.0 16.1 Araya, I., Cur'e, M., Machuca, N., Venero, R.O., Cu'ellar, S., Arcos, C., & Cidale, L.S. (2025). ISOSCELES project: A grid-based quantitative spectroscopic analysis of massive stars. Astronomy & Astrophysics.
  17. ^ Böhm-Vitense, Erika. Introduction to stellar astrophysics 3. Cambridge University Press. 1992: 167. ISBN 0521348714. 
  18. ^ Dufton, P.L., Lennon, D.J., Villaseñor, J.I., Howarth, I.D., Evans, C.J., Mink, S.D., Sana, H., & Taylor, W.D. (2022). Properties of the Be-type stars in 30 Doradus.
  19. ^ McNally, D. The distribution of angular momentum among main sequence stars. The Observatory. 1965, 85: 166–169 [2007-06-26]. [失效链接]
  20. ^ Gray, Richard O.; Corbally, C. J. Stellar Spectral Classification. Princeton University Press. 2009: 123–136. ISBN 0691125112. 
  21. ^ 21.0 21.1 Hao Wang, Chunhua Zhu, Helei Liu, Sufen Guo, Guoliang Lü, Evolutionary tracks of massive stars with different rotation and metallicity in neutrino H–R diagram, Monthly Notices of the Royal Astronomical Society, Volume 526, Issue 3, December 2023, Pages 4335–4344, https://doi.org/10.1093/mnras/stad3071
  22. ^ 22.0 22.1 Mowlavi, N., Eggenberger, P., Meynet, G., Ekström, S., Georgy, C., Maeder, A., Charbonnel, C., & Eyer, L. (2012). Stellar mass and age determinations - I. Grids of stellar models from Z = 0.006 to 0.04 and M = 0.5 to 3.5 M⊙. Astronomy and Astrophysics, 541.
  23. ^ 23.0 23.1 23.2 Norhasliza Y , Raphael H , Patrick E ,et al.Grids of stellar models with rotation VII: Models from 0.8 to 300 M ⊙ at super-solar metallicity ( Z = 0.020)[J].Monthly Notices of the Royal Astronomical Society, 2022.DOI:10.1093/mnras/stac230.
  24. ^ Mokiem, M. R. et al. “The empirical metallicity dependence of the mass-loss rate of O- and early B-type stars.” Astronomy and Astrophysics 473 (2007): 603-614.
  25. ^ 25.0 25.1 Senchyna, P., Hawcroft, C., Garcia, M., Wofford, A., Lee, J.C., & Evans, C.J. (2025). Echoes of the First Stars: Massive Star Evolution in Extremely Metal-Poor Environments with the Habitable Worlds Observatory.
  26. ^ 26.0 26.1 Christodoulou, E. et al. “Investigating episodic mass loss in evolved massive stars. IV. Comprehensive analysis of dusty red supergiants in NGC 6822, IC 10, and WLM.” Astronomy & Astrophysics (2025): n. pag.
  27. ^ 27.0 27.1 Delorme, P. et al. “Population of giant planets around B stars from the first part of the BEAST survey.” Astronomy & Astrophysics (2024): n. pag.
  28. ^ C. Schröder, Schmitt J H M M .X-ray emission from A-type stars[J].Astronomy & Astrophysics, 2007, 475(2):677-684.DOI:10.1051/0004-6361:20077429.
  29. ^ Wood, B. E., Müller, H.-R., Redfield, S., & Edelman, E. 2014, ApJ, 781, L33 [NASA ADS] [CrossRef] [Google Scholar]
  30. ^ Pedersen, M. G., Antoci, V., Korhonen, H., White, T. R., Jessen-Hansen, J., Lehtinen, J., et al. (2017). Do A-type stars flare? Mon. Not. R. Astron. Soc. 466, 3060–3076. doi: 10.1093/mnras/stw3226
  31. ^ Balona, L.A. Spots and flares in hot main sequence stars observed by Kepler, K2 and TESS. Front. Astron. Space Sci. 2021, 8, 32. https://doi.org/10.3389/fspas.2021.580907.
  32. ^ Althukair A K , Tsiklauri D .Main Sequence Star Super-flare Frequency based on Entire Kepler Data[J].IOP Publishing Ltd, 2023.DOI:10.1088/1674-4527/acdc09.
  33. ^ Ahlers J P , Fromont E F , Kopparappu R ,et al.The Habitable Zones of Rapidly Rotating Main Sequence A/F Stars[J].The Astrophysical Journal, 2022, 928(1):35 (9pp).DOI:10.3847/1538-4357/ac5596.
  34. ^ Mukhija, B., Curé, M., Araya, I., Arcos, C., & Christen, A. (2025). Effect of gravity darkening and oblate factor in rapidly rotating massive stars. Astronomy & Astrophysics.
  35. ^ Kubikowski J .Stellar Structure and Evolution[J].Fundamentals of Astrophysics, 2021.DOI:10.1017/9781108951012.017.
  36. ^ Shaikhislamov I F , Golubovsky M P , Shepelin A V ,et al.Kinetic Simulation of Ultra-Hot Jupiter KELT-9b[J].Solar System Research, 2025, 59(3).DOI:10.1134/S0038094624601506.
  37. ^ Janson M , Gratton R , Rodet L ,et al.A wide-orbit giant planet in the high-mass b Centauri binary system[J]. 2021.DOI:10.1038/s41586-021-04124-8.
  38. ^ HIP 78530 Overview
  39. ^ Neuhuser R , Schmidt T O B .Direct Imaging of Extra-solar Planets - Homogeneous Comparison of Detected Planets and Candidates[J]. 2012.DOI:10.5772/30297.
  40. ^ Delorme P , Chomez A , Squicciarini V ,et al.Population of giant planets around B stars from the first part of the BEAST survey[J].Astronomy and astrophysics, 2024:692.DOI:10.1051/0004-6361/202451461.