B型主序星

B型主序星(B V),也稱藍白色主序星,是燃燒氫的恆星,光譜分類為B,光度分類為V的主序星。這一類恆星的質量通常介於太陽的2.5至18倍左右[1][2],表面溫度載10,000至30,000K[3],壽命跨度很大,大多在1000萬年至9億年左右[4][5][6][7][8]。B型恆星是非常明亮的藍色恆星。它們的光譜中有中性的氦線,在B2的類型中最為明顯,以及溫和的氫線。著名的B型主序星有瑤光、小斗二、東咸二、南船三、鳥喙四A、大陵五A和軒轅十四A等[9]。B型主序星在恆星中的占比為約0.125%[10]。
簡介
[編輯]這種恆星的哈佛光譜分類法刊登在哈佛恆星測光表修訂版。在初始的嚴格定義上,B型恆星與O型恆星的光譜存在明確界限,B型恆星的藍紫色部分缺少一條氦的電離譜線,也就是沒有He II 線(氦原子失去兩個電子的狀態)[11][12]。所有的光譜類型,包括B型,都有細分的數值尾碼,表示它們與下一種類型接近的程度,因此B2是B型十分級中的第三級,比B0更接近A型[13][12]。
但是,之後更精細的光譜顯示B0有氦的電離譜線;同樣的,A0也有微弱的中性氦線。隨後細分的光譜類型基於特定頻率的吸收線在恆星中強度,或是比較不同譜線的強度。例如,在MK分類系統中,波長438.7奈米的譜線強度比420.0奈米強的歸類為B0型[14]。氫的巴耳末系譜線在B型中逐漸增強,並在A2型達到峰值(最大值)。電離的矽現被用來矽分B型的恆星,同時鎂線被用來區分溫度上的差異[12]。
B型恆星在大氣層之外沒有日冕層,並且缺乏對流層。它們相比於較小的恆星(例如太陽),有更高的質量流失率,恆星風的速度大約是3,000公里/秒[15][16]。B型主序星的能量來源是CNO循環的熱核融合。因為CNO循環對溫度非常敏感,能量的來源大量的集中在這類恆星的核心,結果是對流層出現在核心。這導致核融合產生的氦穩定的與氫燃料混合在一起[17]。許多B型恆星有高速的自轉,恆星赤道的轉動速度大多在200公里/秒—350公里/秒[18][19]。
有些B型恆星,像是分類為B0至B3的恆星,顯示出有非常強的中性氦譜線。這些化學特殊恆星被稱為強氦恆星,通常他們在光球層會有強大的磁場。對照之下,也有弱氦恆星,它們的氦線強度不足並且有很強的氫光譜。其他化學異常的B型恆星有汞-錳星,它們的光譜類型是B7至B9。還有有著途出的氫發射譜線的Be星[20]。
壽命、行星系統和宜居帶
[編輯]B型主序星雖然壽命短,但已經來得及支撐其行星系統的演化與成礦。B型主序星的壽命通常在幾千萬年至幾億年,中B和晚B型主序星可以在金屬豐度高、恆星自轉極快(此時金屬豐度高提高不透明度、降低表面溫度和光度以延長壽命,自轉速度快則促進更多中外層氫氣進入核心的碳氮氧循環區、提高對氫氣的利用率)的加持下延壽;假如正好3倍太陽質量,通常壽命6億年左右,即使非質量因素都最為有利,極端壽命上限也就10億年左右(且B型主序星的延壽效果實際上已經不如A/F型主序星);而對於約2.5倍太陽質量的靠近B/A邊界的B9.5V的恆星,其主序星階段的理論極端壽命可以被延長到11億年~13億年以上(天文研究資料例如astro.vaporia.com甚至將B型主序星的壽命上限計算為15億年以上[5])[21][22][23]。對早B型主序星(B0V、B1V和部分B2V)而言,自轉速度快仍然可以延壽,但是金屬豐度高反而可能縮短壽命(大質量恆星的金屬豐度過高導致恆星核心的碳氮氧元素濃度太大,而早B型主序星的核心溫度又過高,碳氮氧循環的核融合過程反而失控而加速;以及金屬豐度過高導致其恆星風等因素下質量損失過重,其損失的又是以外殼的氫層燃料為主,也造成縮短壽命;雖然質量受損而減小又延長壽命,但往往沖抵不了之前的壽命縮短[24];此時低金屬豐度+高速自轉可能為延壽效果最長的組合),靠近O/B邊界的B0V的壽命通常在600萬年至1500萬年左右。[21][23][4][6][7][8][25][26][22]
大質量恆星的初始岩屑盤質量更大,在相同金屬元素比例下則金屬總質量更大、固體供給更充足,可以提高固體碰撞增長的速度、從而提高行星/衛星擁有的金屬核質量比例,在其他條件相當時加速岩石星球的核芯增長與行星/衛星胚胎形成。這對該類恆星的行星系統的初始演化和富集礦物具有優勢[27],之後則劣勢明顯——主序星壽命太短、行星系統的演化時間不足,更強的恆星風(A型主序星的恆星風和耀斑活動比F/G/K/M恆星更弱,但從B型主序星開始則恆星風和恆星劇烈活動逐漸顯著增強[16][28][29][30][31][32])和極高頻率電磁輻射(重力昏暗雖然可以減輕恆星赤道面的紫外輻射和表面溫度,但只能讓A型主序星和F型主序星變得宜居,難以緩解2.5倍以上太陽質量的B型恆星的紫外輻射和X射線[33][34])對行星大氣層和岩石層的破壞較為嚴重。[35][23]
目前已發現的擁有系外行星的B型主序星有HD 142250(HIP 77900,約3.74倍太陽質量,B6V主序脈動變星,其伴星介於行星與褐矮星之間)、HD 195689(KELT-9)、HD 129116(HIP 71865,是雙星系統且主星質量為太陽的約6倍左右、光譜為B3V,b Centauri b為其行星)、HIP 78530、HIP 79098、HD 100546等。[36][37][38][27]由於觀測條件的限制(類地行星對相對較大質量恆星的引力擾動和光線擾動都太弱,難以觀測),目前發現的大多為類木行星,但不排除其有大質量的岩石衛星。約2.75倍太陽質量的B9V恆星的宜居帶距離大約在 4—9 天文單位 左右,假如位於宜居帶外側且初始溫室氣體濃度較高、此後逐漸下降,在極端有利條件(假設主序星在極高金屬豐度、極快恆星自轉下延壽,且宜居帶外側星球的溫室氣體濃度變化合理,相當於把主序星階段的90%以上的時間都用上)下可能有9~11億年以上的演化時間,但以地球的生命演化速度來看,即便如此也僅能有類似於細菌、古菌、藍藻等的原始生物;約18倍太陽質量的B0V恆星的宜居帶距離大約在 110—250 天文單位左右,即使在極端有利條件下也僅有1500萬年左右的演化時間,其宜居帶只具有天文學意義而幾乎沒有行星學/生命學意義。[39][40][25][26]
相關條目
[編輯]參考資料
[編輯]- ^ Pecaut, Mark J.; Mamajek, Eric E. Intrinsic Colors, Temperatures, and Bolometric Corrections of Pre-main-sequence Stars. The Astrophysical Journal Supplement Series. 1 September 2013, 208 (1): 9. Bibcode:2013ApJS..208....9P. ISSN 0067-0049. S2CID 119308564. arXiv:1307.2657
. doi:10.1088/0067-0049/208/1/9.
- ^ Mamajek, Eric. A Modern Mean Dwarf Stellar Color and Effective Temperature Sequence. University of Rochester, Department of Physics and Astronomy. 2 March 2021 [5 July 2021].
- ^ Habets, G. M. H. J.; Heintze, J. R. W. Empirical bolometric corrections for the main-sequence. Astronomy and Astrophysics Supplement. November 1981, 46: 193–237 [2009-09-21]. (原始內容存檔於2019-07-17)., Tables VII and VIII.
- ^ 4.0 4.1 Fritzewski D J , Aerts C , Mombarg J S G ,et al.Age uncertainties of red giants due to cumulative rotational mixing of progenitors calibrated by asteroseismology[J].ASTRONOMY & ASTROPHYSICS, 2024, 684(1):13.DOI:10.1051/0004-6361/202449300.
- ^ 5.0 5.1 B-type star
- ^ 6.0 6.1 B. Pérez-Rendón,G. García-Segura,N. Langer.Evolutionary effects of rotation in massive stars and their circumstellar medium[J].Revista Mexicana De Fisica, 2008, 54.DOI:10.1088/0034-4885/71/11/116501.
- ^ 7.0 7.1 Meynet G , Maeder A .Stellar Evolution with Rotation V: Changes in all the Outputs of Massive Star Models[J].Astronomy & Astrophysics, 2000, 361(1):101-120.DOI:doi:10.1007/s001590000011.
- ^ 8.0 8.1 André,Maeder,Georges,等.Rotating massive stars: From first stars to gamma ray bursts[J].Reviews of Modern Physics, 2012.DOI:10.1103/RevModPhys.84.25.
- ^ SIMBAD, entries on Regulus (頁面存檔備份,存於網際網路檔案館) and Algol A (頁面存檔備份,存於網際網路檔案館), accessed June 19, 2007.
- ^ Ledrew, Glenn. The Real Starry Sky. Journal of the Royal Astronomical Society of Canada. February 2001, 95: 32. Bibcode:2001JRASC..95...32L.
- ^ Gray, R O . "A Digital Spectral Classification Atlas.".
- ^ 12.0 12.1 12.2 Gray, C. Richard O.; Corbally, J. Stellar Spectral Classification. Princeton University Press. 2009: 115–122. ISBN 0691125112.
- ^ Pickering, Edward Charles. Revised Harvard photometry : a catalogue of the positions, photometric magnitudes and spectra of 9110 stars, mainly of the magnitude 6.50, and brighter observed with the 2 and 4 inch meridian photometers. Annals of the Astronomical Observatory of Harvard College. 1908, 50. Bibcode:1908AnHar..50....1P.
- ^ Morgan, William Wilson; Keenan, Philip Childs; Kellman, Edith. An atlas of stellar spectra, with an outline of spectral classification. Chicago, Ill: The University of Chicago press. 1943. Bibcode:1943QB881.M6........
- ^ Aschenbach, B.; Hahn, Hermann-Michael; Truemper, Joachim. Hermann-Michael Hahn , 編. The invisible sky: ROSAT and the age of X-ray astronomy. Springer. 1998: 76. ISBN 0387949283.
- ^ 16.0 16.1 Araya, I., Cur'e, M., Machuca, N., Venero, R.O., Cu'ellar, S., Arcos, C., & Cidale, L.S. (2025). ISOSCELES project: A grid-based quantitative spectroscopic analysis of massive stars. Astronomy & Astrophysics.
- ^ Böhm-Vitense, Erika. Introduction to stellar astrophysics 3. Cambridge University Press. 1992: 167. ISBN 0521348714.
- ^ Dufton, P.L., Lennon, D.J., Villaseñor, J.I., Howarth, I.D., Evans, C.J., Mink, S.D., Sana, H., & Taylor, W.D. (2022). Properties of the Be-type stars in 30 Doradus.
- ^ McNally, D. The distribution of angular momentum among main sequence stars. The Observatory. 1965, 85: 166–169 [2007-06-26].[失效連結]
- ^ Gray, Richard O.; Corbally, C. J. Stellar Spectral Classification. Princeton University Press. 2009: 123–136. ISBN 0691125112.
- ^ 21.0 21.1 Hao Wang, Chunhua Zhu, Helei Liu, Sufen Guo, Guoliang Lü, Evolutionary tracks of massive stars with different rotation and metallicity in neutrino H–R diagram, Monthly Notices of the Royal Astronomical Society, Volume 526, Issue 3, December 2023, Pages 4335–4344, https://doi.org/10.1093/mnras/stad3071
- ^ 22.0 22.1 Mowlavi, N., Eggenberger, P., Meynet, G., Ekström, S., Georgy, C., Maeder, A., Charbonnel, C., & Eyer, L. (2012). Stellar mass and age determinations - I. Grids of stellar models from Z = 0.006 to 0.04 and M = 0.5 to 3.5 M⊙. Astronomy and Astrophysics, 541.
- ^ 23.0 23.1 23.2 Norhasliza Y , Raphael H , Patrick E ,et al.Grids of stellar models with rotation VII: Models from 0.8 to 300 M ⊙ at super-solar metallicity ( Z = 0.020)[J].Monthly Notices of the Royal Astronomical Society, 2022.DOI:10.1093/mnras/stac230.
- ^ Mokiem, M. R. et al. 「The empirical metallicity dependence of the mass-loss rate of O- and early B-type stars.」 Astronomy and Astrophysics 473 (2007): 603-614.
- ^ 25.0 25.1 Senchyna, P., Hawcroft, C., Garcia, M., Wofford, A., Lee, J.C., & Evans, C.J. (2025). Echoes of the First Stars: Massive Star Evolution in Extremely Metal-Poor Environments with the Habitable Worlds Observatory.
- ^ 26.0 26.1 Christodoulou, E. et al. 「Investigating episodic mass loss in evolved massive stars. IV. Comprehensive analysis of dusty red supergiants in NGC 6822, IC 10, and WLM.」 Astronomy & Astrophysics (2025): n. pag.
- ^ 27.0 27.1 Delorme, P. et al. 「Population of giant planets around B stars from the first part of the BEAST survey.」 Astronomy & Astrophysics (2024): n. pag.
- ^ C. Schröder, Schmitt J H M M .X-ray emission from A-type stars[J].Astronomy & Astrophysics, 2007, 475(2):677-684.DOI:10.1051/0004-6361:20077429.
- ^ Wood, B. E., Müller, H.-R., Redfield, S., & Edelman, E. 2014, ApJ, 781, L33 [NASA ADS] [CrossRef] [Google Scholar]
- ^ Pedersen, M. G., Antoci, V., Korhonen, H., White, T. R., Jessen-Hansen, J., Lehtinen, J., et al. (2017). Do A-type stars flare? Mon. Not. R. Astron. Soc. 466, 3060–3076. doi: 10.1093/mnras/stw3226
- ^ Balona, L.A. Spots and flares in hot main sequence stars observed by Kepler, K2 and TESS. Front. Astron. Space Sci. 2021, 8, 32. https://doi.org/10.3389/fspas.2021.580907.
- ^ Althukair A K , Tsiklauri D .Main Sequence Star Super-flare Frequency based on Entire Kepler Data[J].IOP Publishing Ltd, 2023.DOI:10.1088/1674-4527/acdc09.
- ^ Ahlers J P , Fromont E F , Kopparappu R ,et al.The Habitable Zones of Rapidly Rotating Main Sequence A/F Stars[J].The Astrophysical Journal, 2022, 928(1):35 (9pp).DOI:10.3847/1538-4357/ac5596.
- ^ Mukhija, B., Curé, M., Araya, I., Arcos, C., & Christen, A. (2025). Effect of gravity darkening and oblate factor in rapidly rotating massive stars. Astronomy & Astrophysics.
- ^ Kubikowski J .Stellar Structure and Evolution[J].Fundamentals of Astrophysics, 2021.DOI:10.1017/9781108951012.017.
- ^ Shaikhislamov I F , Golubovsky M P , Shepelin A V ,et al.Kinetic Simulation of Ultra-Hot Jupiter KELT-9b[J].Solar System Research, 2025, 59(3).DOI:10.1134/S0038094624601506.
- ^ Janson M , Gratton R , Rodet L ,et al.A wide-orbit giant planet in the high-mass b Centauri binary system[J]. 2021.DOI:10.1038/s41586-021-04124-8.
- ^ HIP 78530 Overview
- ^ Neuhuser R , Schmidt T O B .Direct Imaging of Extra-solar Planets - Homogeneous Comparison of Detected Planets and Candidates[J]. 2012.DOI:10.5772/30297.
- ^ Delorme P , Chomez A , Squicciarini V ,et al.Population of giant planets around B stars from the first part of the BEAST survey[J].Astronomy and astrophysics, 2024:692.DOI:10.1051/0004-6361/202451461.