芽孢桿菌界
| 芽孢桿菌界 | |
|---|---|
| 掃描電子顯微圖像,衣氏放線菌(Actinomyces israelii)菌種屬於放線菌門 | |
| 科學分類 | |
| 域: | 細菌域 Bacteria |
| 界: | 芽孢桿菌界 Bacillati (Gibbons & Murray 1978) Oren & Göker 2024 |
| 模式屬 | |
| 芽孢桿菌屬 Bacillus Cohn 1872 (1980年批准名單)[2]
| |
| 門[1] | |
| 異名 | |
| |
芽孢桿菌界(學名:Bacillati)[3],其前稱為大地細菌、陸地細菌(「Terrabacteria」),是一個包含大約三分之二原核生物物種的界,包括革蘭氏陽性細菌門(放線菌門和芽孢桿菌門)以及藍細菌門、綠彎菌門和奇異球菌門。[4][5]
該菌界先前名稱「Terrabacteria」衍生自terra,意思為「陸地」,即源於陸地生命進化的壓力。芽孢桿菌界具有重要的適應性,例如抵抗環境危害(乾燥、紫外線輻射和高鹽度)和進行產氧光合作用。此外,革蘭氏陽性菌細胞壁的獨特性質可能是為適應陸地條件而進化而來的,這也成為該界許多物種存在致病性。[5]這些結果現在表明,陸地適應在原核生物進化中可能發揮比目前所理解的更大作用。[4][5]
「Terrabacteria(大地細菌)」(同義詞Bacillati〔芽孢桿菌界〕)於2004年被提出用於指代放線菌門、藍細菌門和奇異球菌門,後來擴展至包括芽孢桿菌門和綠彎菌門。[4][5]其他系統發育分析支持這些門類之間的密切關係。[6][7][8]大多數未歸入「陸地細菌」的原核生物物種被歸入「水生細菌」分類單元(也稱為假單胞菌界)[5][9],這是根據這些物種共同祖先所處的潮濕環境推斷的。一些分子系統發育分析並不支持芽孢桿菌界和假單胞菌界的這種二分法,[10][11]但最近的基因組分析,[7][8]包括那些專注於構建進化樹的分析,[7]發現這兩組是單系的。[7]
據推測,芽孢桿菌界和假單胞菌界在大約30億年前分化,這表明當時陸地(大陸)已被原核生物占領。[5]芽孢桿菌界和假單胞菌界共同形成一個大演化支,包含截至2009年已知的97%的原核生物和99%的所有細菌種類,並被歸入Selabacteria(光細菌)分類單元,以暗指它們的光養能力(希臘語中為σέλας〔sela〕即「光」的意思)。[12]目前,對於芽孢桿菌界和假單胞菌界之外的細菌界(從而證明Selabacteria分類單元的合理性)存在爭議,並且可能包括或不包括梭桿菌(Fusobacteria)。[5][7]
「Glidobacteria(滑行細菌)」[13]這個名稱包括了芽孢桿菌界的一些成員,但排除了大型革蘭氏陽性菌群芽孢桿菌門和放線菌門,並且不受分子系統發育數據的支持。[4][5][6][10][11][7][8]此外,命名Glidobacteria[13]的文章沒有包括分子系統發育或統計分析,也沒有遵循廣泛使用的三域系統。例如,它聲明真核生物是在最近(約9億年前)從古菌中分離出來的,這與化石記錄相矛盾,[14] 真核生物和古菌譜系嵌套在細菌中,是放線菌門的近親。
2022年,原核生物界級分類單元引入了新規則,提出這些新規則的兩位作者在2024年提出了新的名稱。[3] 他們得出結論:「從分類學角度來看,對於細菌界來說,更好的解決方案似乎是接受巴蒂斯圖齊(Battistuzzi)和赫奇斯(Hedges)在研究中提出的細分方法」,並進行改進。[5] 新的界(且唯一有效)名稱是Bacillati(芽孢桿菌界)。[3]
系統發育
[編輯]根據巴蒂斯圖齊和赫奇斯2009年的系統發育分析得出的系統發育樹狀圖如下,並經過分子鐘校準。[4][5]

最近的分子分析大致發現了以下關係,包括其他門類,其關係尚不確定。[15][16][17][18][19][20]
| 芽孢桿菌界 |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
另一方面,科爾曼(Coleman)等人[7]把熱袍菌門(Thermotogota)、奇異球菌門(Deinococcota)、互養菌門(Synergistota)的組成與其相關的演化支命名為DST群,此外,分析表明超小細菌(CPR群)可能屬於與綠彎菌門關係更密切的芽孢桿菌界。根據這項研究,有時包含的產水菌門屬於假單胞菌界,而梭桿菌門可以同時屬於芽孢桿菌界和假單胞菌界。結果如下:[7]
| 芽孢桿菌界 |
| ||||||||||||||||||||||||||||||||||||||||||||||||
參考文獻
[編輯]- ^ Parte, A.C., Sardà Carbasse, J., Meier-Kolthoff, J.P., Reimer, L.C. and Göker, M. (2020). List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. International Journal of Systematic and Evolutionary Microbiology, 70, 5607-5612; DOI: 10.1099/ijsem.0.004332
- ^ Bacillati in LPSN; Parte, Aidan C.; Sardà Carbasse, Joaquim; Meier-Kolthoff, Jan P.; Reimer, Lorenz C.; Göker, Markus. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. International Journal of Systematic and Evolutionary Microbiology. 1 November 2020, 70 (11): 5607–5612. doi:10.1099/ijsem.0.004332
.
- ^ 3.0 3.1 3.2 Göker, Markus; Oren, Aharon. Valid publication of names of two domains and seven kingdoms of prokaryotes. International Journal of Systematic and Evolutionary Microbiology. 2024-01-22, 74 (1). ISSN 1466-5026. PMID 38252124. doi:10.1099/ijsem.0.006242
(英語).
- ^ 4.0 4.1 4.2 4.3 4.4 Battistuzzi FU, Feijao A, Hedges SB. A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land. BMC Evolutionary Biology. November 2004, 4: 44. PMC 533871
. PMID 15535883. doi:10.1186/1471-2148-4-44
.
- ^ 5.00 5.01 5.02 5.03 5.04 5.05 5.06 5.07 5.08 5.09 Battistuzzi FU, Hedges SB. A major clade of prokaryotes with ancient adaptations to life on land. Molecular Biology and Evolution. February 2009, 26 (2): 335–343. PMID 18988685. doi:10.1093/molbev/msn247.
- ^ 6.0 6.1 Bern M, Goldberg D. Automatic selection of representative proteins for bacterial phylogeny. BMC Evolutionary Biology. May 2005, 5 (1): 34. PMC 1175084
. PMID 15927057. doi:10.1186/1471-2148-5-34
.
- ^ 7.0 7.1 7.2 7.3 7.4 7.5 7.6 7.7 Coleman GA, Davín AA, Mahendrarajah TA, Szánthó LL, Spang A, Hugenholtz P, et al. A rooted phylogeny resolves early bacterial evolution. Science. May 2021, 372 (6542): eabe0511. PMID 33958449. S2CID 233872903. doi:10.1126/science.abe0511. hdl:1983/51e9e402-36b7-47a6-91de-32b8cf7320d2
.
- ^ 8.0 8.1 8.2 Léonard RR, Sauvage E, Lupo V, Perrin A, Sirjacobs D, Charlier P, et al. Was the Last Bacterial Common Ancestor a Monoderm after All?. Genes. February 2022, 13 (2): 376. PMC 8871954
. PMID 35205421. doi:10.3390/genes13020376
.
- ^ Kingdom: Pseudomonadati.
- ^ 10.0 10.1 Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ, Castelle CJ, et al. A new view of the tree of life. Nature Microbiology. April 2016, 1 (5): 16048. PMID 27572647. S2CID 3833474. doi:10.1038/nmicrobiol.2016.48
.
- ^ 11.0 11.1 Zhu Q, Mai U, Pfeiffer W, Janssen S, Asnicar F, Sanders JG, et al. Phylogenomics of 10,575 genomes reveals evolutionary proximity between domains Bacteria and Archaea. Nature Communications. December 2019, 10 (1): 5477. Bibcode:2019NatCo..10.5477Z. PMC 6889312
. PMID 31792218. doi:10.1038/s41467-019-13443-4.
- ^ Battistuzzi FU, Hedges SB. Eubacteria. Hedges SB, Kumar S (編). The Timetree of Life. New York: Oxford University Press. 2009: 106–115.
- ^ 13.0 13.1 Cavalier-Smith T. Rooting the tree of life by transition analyses. Biology Direct. July 2006, 1 (1): 19. PMC 1586193
. PMID 16834776. doi:10.1186/1745-6150-1-19
.
- ^ Knoll AH. Life on a Young Planet : The First Three Billion Years of Evolution on Earth - Updated Edition. Princeton University Press. 2003. ISBN 0-691-00978-3. OCLC 1303471348.
- ^ Anantharaman K, Brown CT, Hug LA, Sharon I, Castelle CJ, Probst AJ, et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nature Communications. October 2016, 7: 13219. Bibcode:2016NatCo...713219A. PMC 5079060
. PMID 27774985. doi:10.1038/ncomms13219.
- ^ Matheus Carnevali PB, Schulz F, Castelle CJ, Kantor RS, Shih PM, Sharon I, et al. Hydrogen-based metabolism as an ancestral trait in lineages sibling to the Cyanobacteria. Nature Communications. January 2019, 10 (1): 463. Bibcode:2019NatCo..10..463M. PMC 6349859
. PMID 30692531. doi:10.1038/s41467-018-08246-y.
- ^ Ji M, Greening C, Vanwonterghem I, Carere CR, Bay SK, Steen JA, et al. Atmospheric trace gases support primary production in Antarctic desert surface soil. Nature. December 2017, 552 (7685): 400–403. Bibcode:2017Natur.552..400J. PMID 29211716. S2CID 4394421. doi:10.1038/nature25014
. hdl:2440/124244
.
- ^ Tahon G, Tytgat B, Lebbe L, Carlier A, Willems A. Abditibacterium utsteinense sp. nov., the first cultivated member of candidate phylum FBP, isolated from ice-free Antarctic soil samples. Systematic and Applied Microbiology. July 2018, 41 (4): 279–290. Bibcode:2018SyApM..41..279T. PMID 29475572. S2CID 3515091. doi:10.1016/j.syapm.2018.01.009.
- ^ Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng JF, et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature. July 2013, 499 (7459): 431–437. Bibcode:2013Natur.499..431R. PMID 23851394. S2CID 4394530. doi:10.1038/nature12352
. hdl:10453/27467
.
- ^ Eloe-Fadrosh EA, Paez-Espino D, Jarett J, Dunfield PF, Hedlund BP, Dekas AE, et al. Global metagenomic survey reveals a new bacterial candidate phylum in geothermal springs. Nature Communications. January 2016, 7: 10476. Bibcode:2016NatCo...710476E. PMC 4737851
. PMID 26814032. doi:10.1038/ncomms10476.